Reduced multitype critical branching processes in random environment
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 58-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multitype critical branching process $\mathbf{Z}_{n},n=0,1,...$, in an i.i.d. random environment. Let $Z_{m,n}$ be the number of particles in this process at time $m$ having descendants at time $n$. A limit theorem is proved for the logarithm of $Z_{nt,n}$ at moments $nt,\,0\leq t\leq 1,$ conditioned on the survival of the process $\mathbf{Z}_{n}$ up to moment $n$ when $n\rightarrow \infty $.
Keywords: multitupe branching processes, reduced branching processes, random environment.
@article{DM_2016_28_4_a5,
     author = {Elena E. D'yakonova},
     title = {Reduced multitype critical branching processes in random environment},
     journal = {Diskretnaya Matematika},
     pages = {58--79},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a5/}
}
TY  - JOUR
AU  - Elena E. D'yakonova
TI  - Reduced multitype critical branching processes in random environment
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 58
EP  - 79
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a5/
LA  - ru
ID  - DM_2016_28_4_a5
ER  - 
%0 Journal Article
%A Elena E. D'yakonova
%T Reduced multitype critical branching processes in random environment
%J Diskretnaya Matematika
%D 2016
%P 58-79
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a5/
%G ru
%F DM_2016_28_4_a5
Elena E. D'yakonova. Reduced multitype critical branching processes in random environment. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 58-79. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a5/

[1] Smith W. L., Wilkinson W., “On branching processes in random environment”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl

[2] Athreya K. B., Karlin S., “On branching processes with random environments. I: Extinction probabilities”, Ann. Math. Statist., 42:5 (1971), 1499–1520; | DOI | MR | Zbl

[3] Athreya K. B., Karlin S., “On branching processes with random environments. II: Limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843–1858 | DOI | MR | Zbl

[4] Afanasyev V. I., “On decomposable branching process with two types of particles”

[5] Afanasyev V. I., “Functional limit theorems for the decomposable branching process with two types of particles”, Discrete Math. Appl., 26:2 (2016), 71–88 | DOI | MR

[6] Vatutin V. A., D'yakonova E. E., “Decomposable branching processes with a fixed extinction moment”, Proc. Steklov Inst. Math., 290 (2015), 103–124 | DOI | MR | Zbl

[7] Vatutin V. A., Dyakonova E. E., “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183–192 | DOI | DOI | MR | MR | Zbl

[8] Vatutin V. A., Dyakonova E. E., Extinction of decomposable branching processes, 2015, 13 pp., arXiv: 1509.00759 [math.PR] | MR

[9] Vatutin V. A., “Uslovnaya funktsionalnaya predelnaya teorema dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Matematicheskie zametki, 2016 (to appear)

[10] Tanny D., “On multitype branching processes in a random environment”, Adv. Appl. Prob., 13:3 (1981), 464–497 | DOI | MR | Zbl

[11] Weissener E. W., “Multitype branching processes in random environments”, J. Appl. Prob., 8:1 (1971), 17–31 | DOI | MR

[12] Kaplan N., “Some results about multidimentional branching processes with random environments”, Ann. Prob., 2:3 (1974), 441–455 | DOI | MR | Zbl

[13] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Prob., 33:2 (2005), 645–673 | DOI | MR | Zbl

[14] Bansaye V., Boinghoff C., “Lower large deviations for supercritical branching processes in random environment”, Proc. Steklov Inst. Math., 282 (2013), 15–34 | DOI | MR | Zbl

[15] Borovkov K. A.,Vatutin V. A., “Reduced critical branching processes in random environment”, Stoch. Proc. Appl., 71:2 (1997), 225–240 | DOI | MR | Zbl

[16] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Theory Probab. Appl., 45:3 (2001), 517–525 | DOI | DOI | MR | Zbl

[17] Fleischmann K., Vatutin V. A., “Reduced subcritical branching processes in random environment”, Adv. Appl. Probab., 31 (1999), 88–111 | DOI | MR | Zbl

[18] Vatutin V. A., Dyakonova E. E., “Galton–Watson branching processes in a random environment. I: Limit theorems”, Theory Probab. Appl., 48:2 (2004), 314–336 | DOI | DOI | MR | Zbl

[19] Vatutin V. A., Dyakonova E. E., “Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions”, Theory Probab. Appl., 49:2 (2005), 275–309 | DOI | DOI | MR | Zbl

[20] Vatutin V. A., Dyakonova E. E., “Branching processes in random environment and bottlenecks in evolution of populations”, Theory Probab. Appl., 51:1 (2007), 189–210 | DOI | DOI | MR | Zbl

[21] Vatutin V. A., Dyakonova E. E., “Limit theorems for reduced branching processes in a random environment”, Theory Probab. Appl., 52:2 (2008), 277–302 | DOI | DOI | MR | Zbl

[22] Vatutin V. A., Dyakonova E. E., “Waves in reduced branching processes in a random environment”, Theory Probab. Appl., 53:4 (2009), 679–695 | DOI | DOI | MR | Zbl

[23] Vatutin V., Dyakonova E., “Yaglom type limit theorem for branching processes in random environment”, Mathematics and computer science III, Trends Math., Birkhauser, Basel, 2004, 375–385 | MR | Zbl

[24] Vatutin V. A., “Reduced branching processes in random environment: the critical case”, Theory Probab. Appl., 47:1 (2003), 99–113 | DOI | DOI | MR | Zbl

[25] Vatutin V. A., Dyakonova E. E., “Asymptotic properties of multitype critical branching processes evolving in a random environment”, Discrete Math. Appl., 20:2 (2010), 157–177 | DOI | DOI | MR | Zbl

[26] Dyakonova E. E., “Multitype Galton-Watson branching processes in Markovian random environment”, Theory Probab. Appl., 56:3 (2011), 508–517 | DOI | DOI | MR

[27] Dyakonova E. E., “Multitype branching processes evolving in a Markovian environment”, Discrete Math. Appl., 22:5–6 (2012), 639–664 | DOI | MR | Zbl

[28] Dyakonova E. E., “Limit theorem for multitype critical branching process evolving in random environment”, Discrete Math. Appl., 25:3 (2015), 137–147 | DOI | DOI | MR | Zbl

[29] Dyakonova E. E., “Critical multitype branching processes in a random environment”, Discrete Math. Appl., 17:6 (2007), 587–606 | DOI | DOI | MR | Zbl

[30] Dyakonova E. E., “Multitype Subcritical Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 80–89 | DOI | MR | Zbl

[31] Dyakonova E. E., Geiger J., Vatutin V. A., “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Relat. Fields, 10:2 (2004), 289–306 | MR | Zbl

[32] Kozlov M. V.,, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab Appl., 21:4 (1977), 791–804 | DOI | MR | Zbl

[33] Kesten H., Spitzer F., “Convergence in distribution of products of random matrices”, Z. Wahrscheinlichkeitstheorie verw. Geb., 67:4 (1984), 363–386 | DOI | MR | Zbl

[34] Sewastjanow B. A., Verweigungprozesse, Akademie Verlag, Berlin, 1974 | MR | MR

[35] Vatutin V. A., “Distance to the nearest mutual ancestor in the Bellman–Harris branching processes”, Math. Notes, 25:5 (1979), 378–387 | DOI | MR | Zbl | Zbl

[36] Zubkov A. M., “Limit distributions of the distance to the closest mutual ancestor”, Theor. Probab. Appl., 20:3 (1976), 602–612 | DOI | MR

[37] Sagitov S. M., “Obschie predki v kriticheskikh vetvyaschikhsya protsessakh Bellmana–Kharrisa s neskolkimi tipami chastits”, Izv. AN KazSSR, ser. fiz.-matem. nauk, 1982, no. 3, 66–69 | MR | Zbl

[38] Sagitov S. M., “Novaya predelnaya teorema dlya redutsirovannykh kriticheskikh vetvyaschikhsya protsessov”, Izv. AN KazSSR, ser. fiz.-matem. nauk, 1989, no. 3, 33–36 | MR | Zbl

[39] Sagitov S. M., “Reduced critical Bellman-Harris branching processes with several types of particles”, Theor. Probab. Appl., 30:4 (1986), 783–796 | DOI | MR | Zbl

[40] Sagitov S. M., “Limit behavior of reduced critical branching processes”, Soviet-Math.-Dokl., 38:3 (1989), 488–491 | MR | Zbl

[41] Sagitov S. M., “Three limit theorems for reduced critical branching processes”, Russian Math. Surv., 50:5 (1995), 1025–1043 | DOI | MR | Zbl

[42] Yakymiv A. L., “Asymptotic behavior of the subcritical and supercritical reduced branching processes”, Theor. Probab. Appl., 30:1 (1986), 201–206 | DOI | MR | Zbl | Zbl

[43] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 ; Billingsley P., Convergence of Probability Measures, J. Wiley, New York–London–Sydney–Toronto, 1968 | MR | MR | Zbl