Lower estimate for the cardinality of the domain of universal functions for the class of linear Boolean functions
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 50-57
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper puts forward a nontrivial lower estimate $2\frac16n$ for the cardinality of the domain of a universal function for the class of linear Boolean functions, where $n$ is the number of variables.
Keywords:
linear function, function, universal function.
@article{DM_2016_28_4_a4,
author = {A. A. Voronenko and M. N. Vyalyi},
title = {Lower estimate for the cardinality of the domain of universal functions for the class of linear {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {50--57},
year = {2016},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a4/}
}
TY - JOUR AU - A. A. Voronenko AU - M. N. Vyalyi TI - Lower estimate for the cardinality of the domain of universal functions for the class of linear Boolean functions JO - Diskretnaya Matematika PY - 2016 SP - 50 EP - 57 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a4/ LA - ru ID - DM_2016_28_4_a4 ER -
%0 Journal Article %A A. A. Voronenko %A M. N. Vyalyi %T Lower estimate for the cardinality of the domain of universal functions for the class of linear Boolean functions %J Diskretnaya Matematika %D 2016 %P 50-57 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a4/ %G ru %F DM_2016_28_4_a4
A. A. Voronenko; M. N. Vyalyi. Lower estimate for the cardinality of the domain of universal functions for the class of linear Boolean functions. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 50-57. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a4/
[1] Voronenko A. A., “On universal functions for the set of linear functions”, Discrete Math. Appl., 22:4 (2012), 421–425 | DOI | DOI | MR | Zbl
[2] Voronenko A. A., Kaftan D. V., “On the generation of false images of linear Boolean functions”, Moscow Univ. Comput. Math. Cybern., 38:4 (2014), 174–176 | DOI | MR | Zbl