The cross-correlation function of complications of linear recurrent sequences
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 38-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with complications of linear recurrent sequences over the field $GF(q)$ and the ring $GR(q^n, p^n)$ with interconnected recurrent relations. The cross-correlation function between cycles of given sequences is estimated.
Keywords: linear recurrent sequences, complication of sequences, finite field, Galois ring, cross-correlation function.
@article{DM_2016_28_4_a3,
     author = {A. D. Bugrov},
     title = {The cross-correlation function of complications of linear recurrent sequences},
     journal = {Diskretnaya Matematika},
     pages = {38--49},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a3/}
}
TY  - JOUR
AU  - A. D. Bugrov
TI  - The cross-correlation function of complications of linear recurrent sequences
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 38
EP  - 49
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a3/
LA  - ru
ID  - DM_2016_28_4_a3
ER  - 
%0 Journal Article
%A A. D. Bugrov
%T The cross-correlation function of complications of linear recurrent sequences
%J Diskretnaya Matematika
%D 2016
%P 38-49
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a3/
%G ru
%F DM_2016_28_4_a3
A. D. Bugrov. The cross-correlation function of complications of linear recurrent sequences. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 38-49. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a3/

[1] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1 (1997), 139–202 | MR | Zbl

[2] Nawaz Y., Gong G., “WG: a family of stream ciphers with designed randomness properties”, Information Sciences, 178:7 (2008), 1903–1916 | DOI | MR | Zbl

[3] Kamlovskii O. V., “Rasstoyanie mezhdu dvoichnymi predstavleniyami lineinykh rekurrent nad polem $GF(2^k)$ i koltsom $\mathbb{Z}_{2^n}$”, Matematicheskie voprosy kriptografii, 7:1 (2016), 73–84

[4] Golomb S. W., Gong G., Signal design for good correlation, Cambridge Univ. Press, New York, 2005, 458 pp. | MR | Zbl

[5] Bugrov A. D., “Kusochno-affinnye podstanovki konechnykh polei”, Prikladnaya diskretnaya matematika, 2015, no. 4(30), 5–23

[6] Kuipers L., Niederreiter H., Uniform distribution of sequences, Wiley, New York, 1974, 390 pp. ; Keipers L., Niderraiter G., Ravnomernoe raspredelenie posledovatelnostei, 1985, 408 pp. | MR | Zbl | MR

[7] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Mat. sbornik, 184:3 (1993), 21–56 ; A. A. Nechaev, “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283–311 | MR | Zbl | DOI | MR

[8] B. A. Pogorelov, V. N. Sachkov (red.), Slovar kriptograficheskikh terminov, MTsNMO, M., 2006, 92 pp.

[9] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2000), 99–113 ; Solodovnikov V. I., “Bent functions from a finite abelian group into a finite abelian group”, Discrete Math. Appl., 12:2 (2002), 111–126 | DOI | MR | DOI | Zbl

[10] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 ; Nechaev A. A., “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | MR | Zbl | DOI | Zbl

[11] O. V. Kamlovskii, “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sb., 200:4 (2009), 31–52 | DOI | MR | Zbl

[12] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Uchebnik v 2-kh tomakh, Gelios ARV, M., 2003, 336 pp.

[13] O. V. Kamlovskii, “Chastotnye kharakteristiki razryadnykh posledovatelnostei lineinykh rekurrent nad koltsami Galua”, Izv. RAN. Ser. matem., 77:6 (2013), 71–96 | DOI | MR | Zbl

[14] Kamlovskii O. V., “Kolichestvo poyavlenii elementov v vykhodnykh posledovatelnostyakh filtruyuschikh generatorov”, Prikladnaya diskretnaya matematika, 2013, no. 3(21), 11–25

[15] Kamlovskii O. V., Spektralnyi metod dlya otsenki chisla reshenii sistem nelineinykh uravnenii s lineinymi rekurrentnymi argumentami (to appear)

[16] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR | Zbl