On the non-recurrent random walk in a random environment
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 6-28

Voir la notice de l'article provenant de la source Math-Net.Ru

For weakly transient random walk in a random environment that tend at $-\infty$ the limit theorem for the time of hitting a high level is proved.
Keywords: random walk in a random environment, branching process with migration in a random environment, Brownian excursion, functional limit theorems.
@article{DM_2016_28_4_a1,
     author = {V. I. Afanasyev},
     title = {On the non-recurrent random walk in a random environment},
     journal = {Diskretnaya Matematika},
     pages = {6--28},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On the non-recurrent random walk in a random environment
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 6
EP  - 28
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/
LA  - ru
ID  - DM_2016_28_4_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On the non-recurrent random walk in a random environment
%J Diskretnaya Matematika
%D 2016
%P 6-28
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/
%G ru
%F DM_2016_28_4_a1
V. I. Afanasyev. On the non-recurrent random walk in a random environment. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 6-28. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/