Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2016_28_4_a1, author = {V. I. Afanasyev}, title = {On the non-recurrent random walk in a random environment}, journal = {Diskretnaya Matematika}, pages = {6--28}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/} }
V. I. Afanasyev. On the non-recurrent random walk in a random environment. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 6-28. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/
[1] Solomon F., “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl
[2] Afanas'ev V. I., “On a Maximum of a transient random walk in random environment”, Theory Probab. Appl., 35:2 (1990), 205–215 | DOI | MR | Zbl
[3] Afanasev V.I, “O vremeni dostizheniya vysokogo urovnya nevozvratnym sluchainym bluzhdaniem v sluchainoi srede”, Teoriya veroyatn. i ee primen., 61:2 (2016), 234–267 | DOI | MR
[4] Kesten H., Kozlov M. V., Spitzer F., “A limit law for random walk in a random environment”, Compositio mathematica, 30:2 (1975), 145–168 | MR | Zbl
[5] Geiger J., Kersting G., Vatutin V. A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. H. Poincare – Probab. Statist., 39:4 (2003), 593–620 | DOI | MR | Zbl
[6] Afanasev V. I., Sluchainye bluzhdaniya i vetvyaschiesya protsessy, MIAN, M., 2007
[7] Afanasyev V. I., “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567 | DOI | DOI | MR | Zbl
[8] Afanasyev V. I., “A new theorem for a critical branching process in random environment”, Discrete Math. Appl., 7:5 (1997), 497–513 | DOI | DOI | MR | Zbl
[9] Durrett R. T., Iglehart D. L., “Functionals of Brownian meander and Brownian excursion”, Ann. Probab., 5:1 (1977), 130–135 | DOI | MR | Zbl