On the non-recurrent random walk in a random environment
Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 6-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

For weakly transient random walk in a random environment that tend at $-\infty$ the limit theorem for the time of hitting a high level is proved.
Keywords: random walk in a random environment, branching process with migration in a random environment, Brownian excursion, functional limit theorems.
@article{DM_2016_28_4_a1,
     author = {V. I. Afanasyev},
     title = {On the non-recurrent random walk in a random environment},
     journal = {Diskretnaya Matematika},
     pages = {6--28},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On the non-recurrent random walk in a random environment
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 6
EP  - 28
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/
LA  - ru
ID  - DM_2016_28_4_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On the non-recurrent random walk in a random environment
%J Diskretnaya Matematika
%D 2016
%P 6-28
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/
%G ru
%F DM_2016_28_4_a1
V. I. Afanasyev. On the non-recurrent random walk in a random environment. Diskretnaya Matematika, Tome 28 (2016) no. 4, pp. 6-28. http://geodesic.mathdoc.fr/item/DM_2016_28_4_a1/

[1] Solomon F., “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl

[2] Afanas'ev V. I., “On a Maximum of a transient random walk in random environment”, Theory Probab. Appl., 35:2 (1990), 205–215 | DOI | MR | Zbl

[3] Afanasev V.I, “O vremeni dostizheniya vysokogo urovnya nevozvratnym sluchainym bluzhdaniem v sluchainoi srede”, Teoriya veroyatn. i ee primen., 61:2 (2016), 234–267 | DOI | MR

[4] Kesten H., Kozlov M. V., Spitzer F., “A limit law for random walk in a random environment”, Compositio mathematica, 30:2 (1975), 145–168 | MR | Zbl

[5] Geiger J., Kersting G., Vatutin V. A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. H. Poincare – Probab. Statist., 39:4 (2003), 593–620 | DOI | MR | Zbl

[6] Afanasev V. I., Sluchainye bluzhdaniya i vetvyaschiesya protsessy, MIAN, M., 2007

[7] Afanasyev V. I., “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567 | DOI | DOI | MR | Zbl

[8] Afanasyev V. I., “A new theorem for a critical branching process in random environment”, Discrete Math. Appl., 7:5 (1997), 497–513 | DOI | DOI | MR | Zbl

[9] Durrett R. T., Iglehart D. L., “Functionals of Brownian meander and Brownian excursion”, Ann. Probab., 5:1 (1977), 130–135 | DOI | MR | Zbl