On the probability of existence of substrings with the same structure in a random sequence
Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 97-110

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic expression (with an explicit estimate of the remainder term) is obtained for the probability that in a finite sequence of polynomial trials controlled by a Markov chain there exist substrings having the same structure.
Keywords: polynomial scheme, Markov chain, structure of substring, equivalent substrings.
@article{DM_2016_28_3_a6,
     author = {V. G. Mikhailov},
     title = {On the probability of existence of substrings with the same structure in a random sequence},
     journal = {Diskretnaya Matematika},
     pages = {97--110},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_3_a6/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - On the probability of existence of substrings with the same structure in a random sequence
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 97
EP  - 110
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_3_a6/
LA  - ru
ID  - DM_2016_28_3_a6
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T On the probability of existence of substrings with the same structure in a random sequence
%J Diskretnaya Matematika
%D 2016
%P 97-110
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_3_a6/
%G ru
%F DM_2016_28_3_a6
V. G. Mikhailov. On the probability of existence of substrings with the same structure in a random sequence. Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 97-110. http://geodesic.mathdoc.fr/item/DM_2016_28_3_a6/