On the number of labeled outerplanar $k$-cycle blocks
Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 26-27
Cet article a éte moissonné depuis la source Math-Net.Ru
An explicit formula is obtained for the number of labeled outerplanar $k$-cycle blocks with a given number of vertices.
Keywords:
outerplanar graph, block, enumeration.
@article{DM_2016_28_3_a2,
author = {V. A. Voblyi},
title = {On the number of labeled outerplanar $k$-cycle blocks},
journal = {Diskretnaya Matematika},
pages = {26--27},
year = {2016},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2016_28_3_a2/}
}
V. A. Voblyi. On the number of labeled outerplanar $k$-cycle blocks. Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 26-27. http://geodesic.mathdoc.fr/item/DM_2016_28_3_a2/
[1] Bodirsky M., Kang M., “Generating outerplanar graphs uniformly at random”, Combinatorics, Probability and Computing, 15 (2006), 333–343 | DOI | MR | Zbl
[2] Flajolet Ph., Noy M., “Analytic combinatorics of non-crossing configurations”, Discrete Math., 204 (1999), 203–229 | DOI | MR | Zbl
[3] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, Europ. J. Combinatorics, 28 (2007), 2091–2105 | DOI | MR | Zbl
[4] Prudnikov A. P. i dr., Integraly i ryady, v. 1, Nauka, GRFML, M., 1981, 799 pp. | MR
[5] Lando S. K., Vvedenie v diskretnuyu matematiku, MTsNMO, M., 2012, 265 pp.