On the number of labeled outerplanar $k$-cycle blocks
Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 26-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit formula is obtained for the number of labeled outerplanar $k$-cycle blocks with a given number of vertices.
Keywords: outerplanar graph, block, enumeration.
@article{DM_2016_28_3_a2,
     author = {V. A. Voblyi},
     title = {On the number of labeled outerplanar $k$-cycle blocks},
     journal = {Diskretnaya Matematika},
     pages = {26--27},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_3_a2/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - On the number of labeled outerplanar $k$-cycle blocks
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 26
EP  - 27
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_3_a2/
LA  - ru
ID  - DM_2016_28_3_a2
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T On the number of labeled outerplanar $k$-cycle blocks
%J Diskretnaya Matematika
%D 2016
%P 26-27
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_3_a2/
%G ru
%F DM_2016_28_3_a2
V. A. Voblyi. On the number of labeled outerplanar $k$-cycle blocks. Diskretnaya Matematika, Tome 28 (2016) no. 3, pp. 26-27. http://geodesic.mathdoc.fr/item/DM_2016_28_3_a2/

[1] Bodirsky M., Kang M., “Generating outerplanar graphs uniformly at random”, Combinatorics, Probability and Computing, 15 (2006), 333–343 | DOI | MR | Zbl

[2] Flajolet Ph., Noy M., “Analytic combinatorics of non-crossing configurations”, Discrete Math., 204 (1999), 203–229 | DOI | MR | Zbl

[3] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, Europ. J. Combinatorics, 28 (2007), 2091–2105 | DOI | MR | Zbl

[4] Prudnikov A. P. i dr., Integraly i ryady, v. 1, Nauka, GRFML, M., 1981, 799 pp. | MR

[5] Lando S. K., Vvedenie v diskretnuyu matematiku, MTsNMO, M., 2012, 265 pp.