On FE-precomplete classes in countable-valued logic
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 51-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the set of functions of countable-valued logic and the closure operator based on systems of functional equation (FE-closure). We prove that the cardinality of the set of all FE-precomplete classes is hypercontinuum.
Keywords: functions of countable-valued logic, FE-closure, FE-precomplete classes.
@article{DM_2016_28_2_a4,
     author = {S. S. Marchenkov},
     title = {On {FE-precomplete} classes in countable-valued logic},
     journal = {Diskretnaya Matematika},
     pages = {51--57},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a4/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On FE-precomplete classes in countable-valued logic
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 51
EP  - 57
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_2_a4/
LA  - ru
ID  - DM_2016_28_2_a4
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On FE-precomplete classes in countable-valued logic
%J Diskretnaya Matematika
%D 2016
%P 51-57
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_2_a4/
%G ru
%F DM_2016_28_2_a4
S. S. Marchenkov. On FE-precomplete classes in countable-valued logic. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 51-57. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a4/

[1] Berezin S. A., “An algebra of unate primitive recursive functions with iteration operation of general form”, Cybernetics, 12:3 (1976), 346–353 | DOI | MR | Zbl

[2] Berezin S. A., “Maximal subalgebras of recursive function algebras”, Cybernetics, 14:6 (1978), 935–938 | DOI | MR | Zbl

[3] Gavrilov G. P., “O funktsionalnoi polnote v schetnoznachnoi logike”, Problemy kibernetiki, 15 (1965), 5–64 | MR | Zbl

[4] Kalinina I. S., “Action of an FE-Closure operator on functions of countable-valued logic”, Moscow University Computational Mathematics and Cybernetics, 38:3 (2014), 134–138 | DOI | MR | Zbl

[5] Kalinina I. S., “O nekotorykh svoistvakh operatora FE-zamykaniya v schetnoznachnoi logike”, Izv. vyssh. uchebn. zaved. Povolzhskii region. Fiz.-matem. nauki, 2014, no. 4, 37–46

[6] Kon P., Universalnaya algebra, Mir, Moskva, 1968, 351 pp. | MR

[7] Maltsev A. I., Algebraicheskie sistemy, Nauka, Moskva, 1970, 392 pp. | MR

[8] Marchenkov S. S., “O moschnosti mnozhestva predpolnykh klassov v nekotorykh klassakh funktsii schetnoznachnoi logiki”, Problemy kibernetiki, 38 (1981), 109–116 | MR | Zbl

[9] Marchenkov S. S., Funktsionalnye sistemy s operatsiei superpozitsii, Fizmatlit, Moskva, 2004, 103 pp. | MR

[10] Marchenkov S. S., “The closure operator in a multivalued logic based on functional equations”, J. Appl. Indust. Math., 5:3 (2011), 383–390 | DOI | MR | MR | Zbl

[11] Marchenkov S. S., “FE classification of functions of many-valued logic”, Moscow University Computational Mathematics and Cybernetics, 35:2 (2011), 89–96 | DOI | MR | Zbl

[12] Marchenkov S. S., “O klassifikatsiyakh funktsii mnogoznachnoi logiki s pomoschyu grupp avtomorfizmov”, Diskr. analiz i issled. operatsii, 18:4 (2011), 66–76 | MR | Zbl

[13] Marchenkov S. S., “Definability in the language of functional equations of a countable-valued logic”, Discrete Math. Appl., 23:5-6 (2013), 451–462 | DOI | DOI | MR | Zbl

[14] Marchenkov S. S., Funktsionalnye uravneniya diskretnoi matematiki, Fizmatlit, Moskva, 2013, 58 pp.

[15] Marchenkov S. S., Kalinina I. S., “The FE-closure operator in countable-valued logic”, 37, no. 3, 2013, 131–136 | MR | Zbl

[16] Marchenkov S. S., Fedorova V. S., “On solutions to the systems of functional Boolean equations”, J. Appl. Indust. Math., 3:4 (2009), 476–481 | DOI | MR | MR | Zbl

[17] Marchenkov S. S., Fedorova V. S., “On solutions to systems of functional equations of multiple-valued logic”, 79, no. 3, 2009, 382–383 | MR | Zbl

[18] Marchenkov S. S., Fedorova V. S., “Solutions to the systems of functional equations of multivalued logic”, Moscow University Computational Mathematics and Cybernetics, 33:4 (2009), 197–201 | DOI | MR | Zbl

[19] Sokolov V. A., “Maximal subalgebras of the algebra of all partially recursive functions”, Cybernetics, 8:1 (1972), 76–79 | DOI | MR | Zbl

[20] Jech T., Set theory, Springer, Berlin, 2006, 772 pp.

[21] Macpherson H. D., Neumann P. M., “Subgroups of infinite symmetric groups”, J. London Math. Soc., 42 (1990), 64–84 | DOI | MR | Zbl