Bounds for the average-case complexity of monotone Boolean functions
Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 146-153
We consider average-case complexity of computing monotone Boolean functions by straight-line programs with a conditional stop over the basis of all Boolean functions of at most two variables. For the set of all $n$-ary monotone Boolean functions new Shannon-type upper and lower bounds for the average-case complexity as $n\to\infty$ are established.
Keywords:
monotone Boolean functions, average-case complexity.
@article{DM_2016_28_2_a13,
author = {A. V. Chashkin},
title = {Bounds for the average-case complexity of monotone {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {146--153},
year = {2016},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2016_28_2_a13/}
}
A. V. Chashkin. Bounds for the average-case complexity of monotone Boolean functions. Diskretnaya Matematika, Tome 28 (2016) no. 2, pp. 146-153. http://geodesic.mathdoc.fr/item/DM_2016_28_2_a13/
[1] Zabaluev R. N., “On the mean complexity of monotone functions”, Discrete Math. Appl., 16:2 (2006), 181–194 | DOI | DOI | MR | Zbl
[2] Ugolnikov A. B., “O realizatsii monotonnykh funktsii skhemami iz funktsionalnykh elementov”, Problemy kibernetiki, 1976, no. 31, 167–185, M.: Nauka | MR
[3] Chashkin A. V., “O srednem vremeni vychisleniya znachenii bulevykh funktsii”, Diskretnyi analiz i issledovanie operatsii, 4:1 (1997), 60–78 | MR | Zbl
[4] Chashkin A. V., “O srednem vremeni vychisleniya bulevykh operatorov”, Diskretnyi analiz i issledovanie operatsii, 5:1 (1998), 88–103 | MR | Zbl