The second coordinate sequence of the MP-LRS over nontrivial Galois ring of an odd characteristic
Diskretnaya Matematika, Tome 28 (2016) no. 1, pp. 123-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Galois ring is said to be nontrivial if it is neither a field, nor a residue ring. Divisors and multiples of the minimal polynomial of the second $p$-adic coordinate sequence of a linear recurrent sequence of maximum period (MP LRS) over a nontrivial Galois ring of an odd characteristic are described, as well as their relation to the initial vector of the LRS. As a corollary, nontrivial upper and lower bounds for the rank of the second coordinate sequence of a MP LRS over a nontrivial Galois ring of an odd characteristic are obtained.
Keywords: Galois ring, linear recurrent sequence, coordinate sequence, bound for the rank.
@article{DM_2016_28_1_a7,
     author = {V. N. Tsypyschev},
     title = {The second coordinate sequence of the {MP-LRS} over nontrivial {Galois} ring of an odd characteristic},
     journal = {Diskretnaya Matematika},
     pages = {123--149},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_1_a7/}
}
TY  - JOUR
AU  - V. N. Tsypyschev
TI  - The second coordinate sequence of the MP-LRS over nontrivial Galois ring of an odd characteristic
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 123
EP  - 149
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_1_a7/
LA  - ru
ID  - DM_2016_28_1_a7
ER  - 
%0 Journal Article
%A V. N. Tsypyschev
%T The second coordinate sequence of the MP-LRS over nontrivial Galois ring of an odd characteristic
%J Diskretnaya Matematika
%D 2016
%P 123-149
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_1_a7/
%G ru
%F DM_2016_28_1_a7
V. N. Tsypyschev. The second coordinate sequence of the MP-LRS over nontrivial Galois ring of an odd characteristic. Diskretnaya Matematika, Tome 28 (2016) no. 1, pp. 123-149. http://geodesic.mathdoc.fr/item/DM_2016_28_1_a7/

[1] Берлекэмп Э.Р. Algebraicheskaya teoriya kodirovaniya, Mir, M., 1971, 568 pp. ; Berlekamp E. R., Algebraic coding theory, McGraw-Hill, 1968, 466 pp. | MR | MR | Zbl

[2] Kurakin V.L., “Predstavleniya nad koltsom ${\mathbb Z}/p^n$ lineinoi rekurrentnoi posledovatelnosti maksimalnogo perioda nad polem $GF(p)$”, Diskretnaya matematika, 4:4 (1992), 96–116 ; Kurakin V.L., “Representations over $\mathbb Z_{p^n}$ of linear recurring sequence of maximal period over $GF(p)$”, Discrete Math. Appl., 3:3 (1993), 275–296 | MR | Zbl | DOI

[3] Kurakin V.L., “Pervaya koordinatnaya posledovatelnost lineinoi rekurrenty maksimalnogo perioda nad koltsom Galua”, Diskretnaya matematika, 6:2 (1994), 88–100 | MR | Zbl

[4] Lidl R., Niderraiter G., Konechnye polya, tt. 1,2, Mir, M., 1988, 819 pp.; Lidl R., Niederreiter H., “Finite fields”, Encyclopedia of Mathematics and its Applications, 20, Addison-Wesley, 1987, 755 pp. | MR

[5] Nechaev A.A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 ; Nechaev A.A., “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | MR | Zbl | DOI | Zbl

[6] Nechaev A.A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 107–121 ; “Linear recurrence sequences over commutative rings”, Discrete Math. Appl., 2:6 (1992), 659–683 | MR | MR

[7] Sachkov V.N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982, 384 pp. | MR

[8] Tsypyshev V. N., “Matrichnyi lineinyi kongruentnyi generator nad koltsom Galua nechetnoi kharakteristiki”, Tezisy dokl. V mezhdunar. konf. “Algebra i teoriya chisel: Sovremennye problemy i prilozheniya” (Tula, 2003), Tul. GPU, Tula, 2003, 233–237

[9] Tsypyshev V.N., “Kriterii polnoty perioda mnogochlena Galua nad sobstvennym koltsom Galua nechetnoi kharakteristiki”, Sovremennaya matematika i ee prilozheniya, 14 (2004), 108–120

[10] Helleseth T., Martinsen M., “Binary sequences of period $2^m-1$ with large linear complexity”, Inf. and Comput., 151 (1999), 73–91 | DOI | MR | Zbl

[11] Kuzmin A.S., Nechaev A.A., “Linear recurrent sequences over Galois rings”, II Int.Conf.Dedic.Mem. A.L.Shirshov (Barnaul), Contemporary Math., 184, 1991, 237–254 | DOI | MR

[12] McDonald C., Finite rings with identity, Marcel Dekker, New York, 1974, 495 pp. | MR | Zbl

[13] Raghavendran R., “A class of finite rings”, Compositio Math., 22:1 (1970), 49–57 | MR | Zbl

[14] Tsypyshev V. N., “Kriterii polnoty perioda mnogochlena Galua nad nevyrozhdennym koltsom Galua nechetnoi kharakteristiki”, Sovremennaya matematika i ee prilozheniya, 2004, no. 14, 108–120; Tsypyschev, V.N., “Full periodicity of Galois polynomials over nontrivial Galois rings of odd characteristic”, J. Math. Sci., 131:6 (2005), 6120–6132, New York | DOI | MR | Zbl

[15] Tsypyschev V.N., “Rank estimations of the second coordinate sequence of MP-LRS over nontrivial Galois ring of odd characteristic”, II Int. Sci. Conference on Problems of Security and Counter-Terrorism Activity (Moscow, MSU, October 25–26, 2006), Proceedings published by Moscow Independent Center for Mathematical Education, 2007, 287–289 (in Russian)

[16] Tsypyschev V.N. Second coordinate sequence of the MP-LRS over nontrivial Galois ring of the odd characteristic, IV Mezhdunarodnyi simpozium “Sovremennye tendentsii v kriptografii” CtCrypt'2015 (Kazan, 3–5 iyunya 2015 g.), Materialy konferentsii

[17] Zierler N., Mills W., “Products of linear recurring sequences”, J. Algebra, 27 (1973), 147–157 | DOI | MR | Zbl