Tests of contact closure for contact circuits
Diskretnaya Matematika, Tome 28 (2016) no. 1, pp. 87-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the problem of synthesis of two-pole contact circuits implementing $n$-place Boolean functions and admitting short fault detection and diagnostic tests with respect to closures of contacts. It is shown that almost all $n$-place Boolean functions are implemented by irredundant two-pole contact circuits admitting single fault detection, complete fault detection and single diagnostic tests of constant length. We also prove that: \linebreak 1) any Boolean function $f(x_1,\ldots,x_n)$ may be implemented by an irredundant two-pole contact circuit containing at most one input variable distinct from the variables $x_1,\ldots,x_n$ and admitting single and complete fault detection tests of length at most $2n$; \linebreak 2) any Boolean function $f(x_1,\ldots,x_n)$ may be implemented by an irredundant two-pole contact circuit containing at most two input variables distinct from the variables $x_1,\ldots,x_n$ and admitting single diagnostic test of length at most $4n$.
Keywords: contact circuit, contact closure, fault detection test, diagnostic test.
@article{DM_2016_28_1_a4,
     author = {K. A. Popkov},
     title = {Tests of contact closure for contact circuits},
     journal = {Diskretnaya Matematika},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2016_28_1_a4/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Tests of contact closure for contact circuits
JO  - Diskretnaya Matematika
PY  - 2016
SP  - 87
EP  - 100
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2016_28_1_a4/
LA  - ru
ID  - DM_2016_28_1_a4
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Tests of contact closure for contact circuits
%J Diskretnaya Matematika
%D 2016
%P 87-100
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2016_28_1_a4/
%G ru
%F DM_2016_28_1_a4
K. A. Popkov. Tests of contact closure for contact circuits. Diskretnaya Matematika, Tome 28 (2016) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/DM_2016_28_1_a4/

[1] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izdatelstvo MGU, Moskva, 1984, 138 pp.

[2] Chegis I. A., Yablonskii S. V., “Logicheskie sposoby kontrolya raboty elektricheskikh skhem”, Trudy MIAN, 51 (1958), 270–360 | Zbl

[3] Yablonskii S. V., “Nadezhnost i kontrol upravlyayuschikh sistem”, Materialy Vsesoyuznogo seminara po diskretnoi matematike i ee prilozheniyam, 1986, 7–12, Izdatelstvo MGU, Moskva | MR

[4] Yablonskii S. V., “Nekotorye voprosy nadezhnosti i kontrolya upravlyayuschikh sistem”, Matematicheskie voprosy kibernetiki, 1988, no. 1, 5–25 | MR

[5] Redkin N. P., Nadezhnost i diagnostika skhem, Izdatelstvo MGU, Moskva, 1992, 192 pp.

[6] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1986, 384 pp. | MR

[7] Romanov D. S., “O sinteze kontaktnykh skhem, dopuskayuschikh korotkie proveryayuschie testy”, Uchenye zapiski Kazanskogo universiteta. Fiziko-matematicheskie nauki, 156:3 (2014), 110–115

[8] Madatyan Kh. A., “Polnyi test dlya bespovtornykh kontaktnykh skhem”, Problemy kibernetiki, 1970, no. 23, 103–118

[9] Redkin N. P., “O polnykh proveryayuschikh testakh dlya kontaktnykh skhem”, Metody diskretnogo analiza v issledovanii ekstremalnykh struktur, 39 (1983), 80–87 | MR | Zbl

[10] Redkin N. P., “O proveryayuschikh testakh zamykaniya i razmykaniya”, Metody diskretnogo analiza v optimizatsii upravlyayuschikh sistem, 40 (1983), 87–99 | MR | Zbl