Orbital derivatives over subgroups and their combinatorial and group-theoretic properties
Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 94-119
Voir la notice de l'article provenant de la source Math-Net.Ru
Properties of the orbital derivatives over subgroups of the group ${{G}_{n}}$ generated by the additive groups of the residue ring ${{\mathbb{Z}}_{{{2}^{n}}}}$ and the $n$-dimensional vector space ${{V}_{n}}$ over the field $GF(2)$ are considered. Nonrefinable sequences of nested orbits for the subgroups of the group ${{G}_{n}}$ and of the Sylow subgroup ${{P}_{n}}$ of the symmetric group ${{S}_{{{2}^{n}}}}$ are described. For the orbital derivatives, three analogs of the concept of the degree of nonlinearity for functions over ${{\mathbb{Z}}_{{{2}^{n}}}}$ or ${{V}_{n}}$ are suggested.
Keywords:
additive group of the residue ring, additive group of the vector space, Sylow 2-subgroup, degree of nonlinearity, normal subgroups.
@article{DM_2015_27_4_a7,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {Orbital derivatives over subgroups and their combinatorial and group-theoretic properties},
journal = {Diskretnaya Matematika},
pages = {94--119},
publisher = {mathdoc},
volume = {27},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_4_a7/}
}
TY - JOUR AU - B. A. Pogorelov AU - M. A. Pudovkina TI - Orbital derivatives over subgroups and their combinatorial and group-theoretic properties JO - Diskretnaya Matematika PY - 2015 SP - 94 EP - 119 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2015_27_4_a7/ LA - ru ID - DM_2015_27_4_a7 ER -
B. A. Pogorelov; M. A. Pudovkina. Orbital derivatives over subgroups and their combinatorial and group-theoretic properties. Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 94-119. http://geodesic.mathdoc.fr/item/DM_2015_27_4_a7/