Orbital derivatives over subgroups and their combinatorial and group-theoretic properties
Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 94-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of the orbital derivatives over subgroups of the group ${{G}_{n}}$ generated by the additive groups of the residue ring ${{\mathbb{Z}}_{{{2}^{n}}}}$ and the $n$-dimensional vector space ${{V}_{n}}$ over the field $GF(2)$ are considered. Nonrefinable sequences of nested orbits for the subgroups of the group ${{G}_{n}}$ and of the Sylow subgroup ${{P}_{n}}$ of the symmetric group ${{S}_{{{2}^{n}}}}$ are described. For the orbital derivatives, three analogs of the concept of the degree of nonlinearity for functions over ${{\mathbb{Z}}_{{{2}^{n}}}}$ or ${{V}_{n}}$ are suggested.
Keywords: additive group of the residue ring, additive group of the vector space, Sylow 2-subgroup, degree of nonlinearity, normal subgroups.
@article{DM_2015_27_4_a7,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Orbital derivatives over subgroups and their combinatorial and group-theoretic properties},
     journal = {Diskretnaya Matematika},
     pages = {94--119},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_4_a7/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Orbital derivatives over subgroups and their combinatorial and group-theoretic properties
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 94
EP  - 119
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_4_a7/
LA  - ru
ID  - DM_2015_27_4_a7
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Orbital derivatives over subgroups and their combinatorial and group-theoretic properties
%J Diskretnaya Matematika
%D 2015
%P 94-119
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_4_a7/
%G ru
%F DM_2015_27_4_a7
B. A. Pogorelov; M. A. Pudovkina. Orbital derivatives over subgroups and their combinatorial and group-theoretic properties. Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 94-119. http://geodesic.mathdoc.fr/item/DM_2015_27_4_a7/

[1] Diskretnaya matematika. Entsiklopediya, Nauchnoe izdatelstvo «Bolshaya Rossiiskaya entsiklopediya», M., 2004

[2] Cusick T. W., Stănică P., Cryptographic Boolean Functions and Applications, Elsevier, 2009, 232 pp. | MR

[3] Pogorelov B. A., Pudovkina M. A., “Orbitalnye proizvodnye nad koltsom vychetov. Chast I. Obschie svoistva”, Matematicheskie voprosy kriptografii, 5:4 (2014), 99–127

[4] Pogorelov B. A., Pudovkina M. A., “Orbitalnye proizvodnye nad koltsom vychetov. Chast II. Veroyatnostno-kombinatornye svoistva”, Matematicheskie voprosy kriptografii, 6:1 (2015), 117–133 | MR

[5] Pogorelov B. A., Pudovkina M. A., “Orbitalnye proizvodnye i nadgruppy regulyarnykh additivnykh grupp”, Matematicheskie voprosy kriptografii, 2015 (to appear)

[6] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004

[7] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 2010, no. 2, 22–33

[8] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii na tsiklicheskoi gruppe primarnogo poryadka”, Prikladnaya diskretnaya matematika, 2013, no. 2, 26–38

[9] Cheremushkin A. V., “Vychislenie stepeni nelineinosti funktsii na tsiklicheskoi gruppe primarnogo poryadka”, Prikladnaya diskretnaya matematika, 2014, no. 2, 37–47