Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2015_27_4_a5, author = {Vladimir G. Mikhaylov}, title = {Estimates of accuracy of the {Poisson} approximation for the distribution of number of runs of long string repetitions in a {Markov} chain}, journal = {Diskretnaya Matematika}, pages = {67--78}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2015_27_4_a5/} }
TY - JOUR AU - Vladimir G. Mikhaylov TI - Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain JO - Diskretnaya Matematika PY - 2015 SP - 67 EP - 78 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2015_27_4_a5/ LA - ru ID - DM_2015_27_4_a5 ER -
%0 Journal Article %A Vladimir G. Mikhaylov %T Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain %J Diskretnaya Matematika %D 2015 %P 67-78 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2015_27_4_a5/ %G ru %F DM_2015_27_4_a5
Vladimir G. Mikhaylov. Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain. Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 67-78. http://geodesic.mathdoc.fr/item/DM_2015_27_4_a5/
[1] Belyaev P.F., “O sovmestnom raspredelenii chastot dlinnykh $s$-tsepochek v multinomialnoi skheme s ravnoveroyatnymi iskhodami”, Teoriya veroyatn. i ee primen., 14:3 (1969), 540–546 | Zbl
[2] Zubkov A.M., Mikhailov V.G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i ee primen., 19:1 (1974), 173–181 | MR | Zbl
[3] Zubkov A.M., Mikhailov V.G., “O povtoreniyakh $s$-tsepochek v posledovatelnosti nezavisimykh velichin.”, Teoriya veroyatn. i ee primen., 24:2 (1979), 267–279 | MR | Zbl
[4] Mikhailov V.G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s mnogokratnymi dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyat. i ee primen., 19:1 (1974), 182–187
[5] Hansen N. R., “Local alignment of Markov chains”, Ann. Appl. Probab., 16:3 (2006), 1262–1296 | DOI | MR | Zbl
[6] Belyaev P.F., “K voprosu o sovmestnom raspredelenii chastot $s$-tsepochek v slozhnykh tsepyakh Markova s bolshim chislom sostoyanii”, Teoriya veroyatn. i ee primen., 14:2 (1969), 333–339
[7] Belyaev P.F., “O sovmestnom raspredelenii chastot iskhodov v tsepyakh Markova s bolshim chislom sostoyanii”, Teoriya veroyatn. i ee primen., 22:3 (1977), 534–545 | MR | Zbl
[8] Zubkov A.M., “Neravenstva dlya veroyatnostei perekhodov s zaprescheniyami i ikh primeneniya”, Matem. sb., 109(151):4(8) (1979), 491–532 | MR | Zbl
[9] Mikhailov V.G., Shoitov A.M., “O dlinnykh povtoreniyakh tsepochek v tsepi Markova”, Diskretnaya matematika, 26:3 (2014), 79–89 | DOI | MR
[10] Mikhailov V.G., Shoitov A.M., “Mnogokratnye povtoreniya dlinnykh tsepochek v konechnoi tsepi Markova”, Matematicheskie voprosy kriptografii, 6:3 (2015)
[11] Gantmakher F.R., Teoriya matrits, 5-e izd., FIZMATLIT, M.:, 2004, 560 pp.
[12] Shoitov A.M., “Puassonovskoe priblizhenie dlya chisla povtorenii znachenii diskretnoi funktsii ot tsepochek”, Diskretnaya matematika, 17:2 (2005), 56–69 | DOI | MR
[13] Barbour A.D., Holst L., Janson S., Poisson Approximation, Oxford University Press, 1992, 277 pp. | MR | Zbl
[14] Erhardsson T., “Stein's method for Poisson and compound Poisson approximation”, An introduction to Stein's method, eds. Barbour A. D., Chen L. H. Y., Singapore Univ. Press, 2005, 61–113 | DOI | MR