Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain
Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_0,X_1,\ldots$ be a simple ergodic Markov chain with a finite set of states and $\tilde\xi_{n,k}(s)$ be a number of runs of $k$-fold repetitions of strings having length $s$. Estimates of accuracy of the Poisson approximation for the distribution of $\xi_{n,k}(s)$ in the sequence $X_0,X_1,\ldots,X_{n+s-1}$ are obtained, these estimates are uniform over $k$. \def\acknowledgementname{Funding
Keywords: Markov chain, $k$-fold repetitions of $s$-strings, accuracy of the Poisson approximation.
@article{DM_2015_27_4_a5,
     author = {Vladimir G. Mikhaylov},
     title = {Estimates of accuracy of the {Poisson} approximation for the distribution of number of runs of long string repetitions in a {Markov} chain},
     journal = {Diskretnaya Matematika},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_4_a5/}
}
TY  - JOUR
AU  - Vladimir G. Mikhaylov
TI  - Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 67
EP  - 78
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_4_a5/
LA  - ru
ID  - DM_2015_27_4_a5
ER  - 
%0 Journal Article
%A Vladimir G. Mikhaylov
%T Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain
%J Diskretnaya Matematika
%D 2015
%P 67-78
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_4_a5/
%G ru
%F DM_2015_27_4_a5
Vladimir G. Mikhaylov. Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain. Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 67-78. http://geodesic.mathdoc.fr/item/DM_2015_27_4_a5/

[1] Belyaev P.F., “O sovmestnom raspredelenii chastot dlinnykh $s$-tsepochek v multinomialnoi skheme s ravnoveroyatnymi iskhodami”, Teoriya veroyatn. i ee primen., 14:3 (1969), 540–546 | Zbl

[2] Zubkov A.M., Mikhailov V.G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i ee primen., 19:1 (1974), 173–181 | MR | Zbl

[3] Zubkov A.M., Mikhailov V.G., “O povtoreniyakh $s$-tsepochek v posledovatelnosti nezavisimykh velichin.”, Teoriya veroyatn. i ee primen., 24:2 (1979), 267–279 | MR | Zbl

[4] Mikhailov V.G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s mnogokratnymi dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyat. i ee primen., 19:1 (1974), 182–187

[5] Hansen N. R., “Local alignment of Markov chains”, Ann. Appl. Probab., 16:3 (2006), 1262–1296 | DOI | MR | Zbl

[6] Belyaev P.F., “K voprosu o sovmestnom raspredelenii chastot $s$-tsepochek v slozhnykh tsepyakh Markova s bolshim chislom sostoyanii”, Teoriya veroyatn. i ee primen., 14:2 (1969), 333–339

[7] Belyaev P.F., “O sovmestnom raspredelenii chastot iskhodov v tsepyakh Markova s bolshim chislom sostoyanii”, Teoriya veroyatn. i ee primen., 22:3 (1977), 534–545 | MR | Zbl

[8] Zubkov A.M., “Neravenstva dlya veroyatnostei perekhodov s zaprescheniyami i ikh primeneniya”, Matem. sb., 109(151):4(8) (1979), 491–532 | MR | Zbl

[9] Mikhailov V.G., Shoitov A.M., “O dlinnykh povtoreniyakh tsepochek v tsepi Markova”, Diskretnaya matematika, 26:3 (2014), 79–89 | DOI | MR

[10] Mikhailov V.G., Shoitov A.M., “Mnogokratnye povtoreniya dlinnykh tsepochek v konechnoi tsepi Markova”, Matematicheskie voprosy kriptografii, 6:3 (2015)

[11] Gantmakher F.R., Teoriya matrits, 5-e izd., FIZMATLIT, M.:, 2004, 560 pp.

[12] Shoitov A.M., “Puassonovskoe priblizhenie dlya chisla povtorenii znachenii diskretnoi funktsii ot tsepochek”, Diskretnaya matematika, 17:2 (2005), 56–69 | DOI | MR

[13] Barbour A.D., Holst L., Janson S., Poisson Approximation, Oxford University Press, 1992, 277 pp. | MR | Zbl

[14] Erhardsson T., “Stein's method for Poisson and compound Poisson approximation”, An introduction to Stein's method, eds. Barbour A. D., Chen L. H. Y., Singapore Univ. Press, 2005, 61–113 | DOI | MR