Extinction of decomposable branching processes
Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 26-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior, as $n\rightarrow \infty $, of the conditional distribution of the number of particles in a decomposable critical branching process $\mathbf{Z}(m)=(Z_{1}(m),\ldots,Z_{N}(m))$ with $N$ types of particles at moment $m=n-k,\, k=o(n)$, is investigated given that the extinction moment of the process equals to $n$.
Keywords: decomposable branching processes, criticality, conditional limit theorems.
@article{DM_2015_27_4_a2,
     author = {Vladimir A. Vatutin and Elena E. Dyakonova},
     title = {Extinction of decomposable branching processes},
     journal = {Diskretnaya Matematika},
     pages = {26--37},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_4_a2/}
}
TY  - JOUR
AU  - Vladimir A. Vatutin
AU  - Elena E. Dyakonova
TI  - Extinction of decomposable branching processes
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 26
EP  - 37
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_4_a2/
LA  - ru
ID  - DM_2015_27_4_a2
ER  - 
%0 Journal Article
%A Vladimir A. Vatutin
%A Elena E. Dyakonova
%T Extinction of decomposable branching processes
%J Diskretnaya Matematika
%D 2015
%P 26-37
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_4_a2/
%G ru
%F DM_2015_27_4_a2
Vladimir A. Vatutin; Elena E. Dyakonova. Extinction of decomposable branching processes. Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 26-37. http://geodesic.mathdoc.fr/item/DM_2015_27_4_a2/

[1] Athreya K.B., Ney P.E., Branching Processes, Springer, Berlin, 1972, VIII+ 257 pp. | MR | Zbl

[2] Afanasev V.I., “Funktsionalnye predelnye teoremy dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Diskretnaya matematika, 27:2 (2015), 22–44 | DOI | MR

[3] Vatutin V. A., Dyakonova E.E., “Razlozhimye vetvyaschiesya protsessy s fiksirovannym momentom vyrozhdeniya”, Trudy Matem. in-ta im. V.A.Steklova, 290 (2015), 114–135 | DOI

[4] Foster J., Ney P., “Decomposable critical multi-type branching processes”, Sanhya, the Indian J. Stat., Ser. A, 38 (1976), 28–37 | MR | Zbl

[5] Foster J., Ney P., “Limit laws for decomposable critical branching processes”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 46:1 (1978), 13–43 | DOI | MR | Zbl

[6] Markushevich A. I., Kratkii kurs teorii analiticheskikh funktsii, 3-e izd., Fizmatlit, M., 1966, 388 pp. | MR

[7] Ogura Y., “Asymptotic behavior of multitype Galton-Watson processes”, J. Math. Kyoto Univ., 15 (1975), 251–302 | MR | Zbl

[8] Polin A. K., “Predelnye teoremy dlya razlozhimykh kriticheskikh vetvyaschikhsya protsessov”, Matem. sb., 100(142):3(7) (1976), 420–435 | MR | Zbl

[9] Polin A. K., “Predelnye teoremy dlya razlozhimykh vetvyaschikhsya protsessov s finalnymi tipami”, Matem. sb., 104(146):1(9) (1977), 151–161 | MR | Zbl

[10] Savin A.A., Chistyakov V.P., “Nekotorye teoremy dlya vetvyaschikhsya protsessov s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 7:1 (1962), 95–104 | Zbl

[11] Vatutin V. A., “Struktura razlozhimykh redutsirovannykh protsessov. I. Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primen., 59:4 (2014), 667–692 | DOI | MR

[12] Vatutin V. A., Sagitov S. M., “Razlozhimyi kriticheskii vetvyaschiisya protsess s dvumya tipami chastits”, Trudy Matem. in-ta AN SSSR, 177 (1986), 3–20 | MR | Zbl

[13] Vatutin V.A., Dyakonova E.E., Jagers P., Sagitov S.M., “A decomposable branching process in a markovian environment”, Int. J. Stochast. Anal., 2012, ID: 694285 | MR | Zbl

[14] Zubkov A.M., “Predelnoe povedenie razlozhimykh kriticheskikh vetvyaschikhsya protsessov s dvumya tipami chastits”, Teoriya veroyatn. i ee primen., 27:2 (1982), 228—238 | MR | Zbl