An approach to the transformation of periodic sequences
Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 150-157
We consider a periodic sequence $\{c_k\}_{k=0}^\infty$ and investigate a numerical properties of an irrational number $\alpha = \sum_{k=0}^\infty \frac{c_k}{k!}$. As an application of our results we present a simple transformation of periodic sequence $\{c_k\}_{k=0}^\infty$ into aperiodic sequence.
Keywords:
irrationality, Ziegel – Shidlovskii method, linear independency measure, aperiodic sequence.
@article{DM_2015_27_4_a11,
author = {V. G. Chirskii and A. Yu. Nesterenko},
title = {An approach to the transformation of periodic sequences},
journal = {Diskretnaya Matematika},
pages = {150--157},
year = {2015},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_4_a11/}
}
V. G. Chirskii; A. Yu. Nesterenko. An approach to the transformation of periodic sequences. Diskretnaya Matematika, Tome 27 (2015) no. 4, pp. 150-157. http://geodesic.mathdoc.fr/item/DM_2015_27_4_a11/
[1] Alferov A.P., Zubov A.Yu., Kuzmin A.S., Cheremushkin A.V., Osnovy kriptografii, uchebnoe posobie, Gelios, Moskva, 2001, 480 pp.
[2] Nesterenko Yu.V., Teoriya chisel, Akademiya, Moskva, 2008, 272 pp.
[3] Fomichev V.M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, Moskva, 2010, 424 pp.
[4] Shidlovskii A.B., Transtsendentnye chisla, Nauka, Moskva, 1987, 417 pp. | MR
[5] Bertrand D., Chirskii V., Yebbou Y., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, XIII:2 (2004), 241–260 | DOI | MR | Zbl