On elementary word functions obtained by bounded prefix concatenation
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 44-55
Cet article a éte moissonné depuis la source Math-Net.Ru
The operation of bounded prefix concatenation (BPC) is introduced on the set of word functions in the alphabet $\{1,2\}$. The class BPC of polynomially computable functions is defined on the basis of this operation and the superposition operation. The class BPC is shown to contain a number of word functions and to be closed with respect to certain known operations. A certain type of two-tape nonerasing Turing machines is introduced, functions from the class BPC are shown to be computable on machines of this type in polynomial time.
Keywords:
bounded prefix concatenation, polynomially computable function.
@article{DM_2015_27_3_a3,
author = {Sergey S. Marchenkov},
title = {On elementary word functions obtained by bounded prefix concatenation},
journal = {Diskretnaya Matematika},
pages = {44--55},
year = {2015},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a3/}
}
Sergey S. Marchenkov. On elementary word functions obtained by bounded prefix concatenation. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 44-55. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a3/
[1] Kuznetsov A. V., “K teoreme o kanonicheskori forme dlya ordinalno-rekursivnykh funktsii”, Prilozhenie v kn.: R. L. Gudstein, Matematicheskaya logika, Nauka, Moskva, 1961, 149–154
[2] Marchenkov S. S., Elementarnye rekursivnye funktsii, MTsNMO, Moskva, 2003, 112 pp.
[3] Marchenkov, S. S., “Ogranichennaya monotonnaya rekursiya i MG-avtomaty”, Programmirovanie, 2013, no. 6, 3–11
[4] Grzegorczyk, A., “Some classes of recursive functions”, Rozpr. Matemat., 4 (1962), 1–46 | MR
[5] Kalmar, L., “Egyszerü pelda eldönthetelen aritmetikai problemara”, Mat. és fiz. lapok, 50 (1943), 1–23 | MR | Zbl
[6] Skolem, Th., “Proof of some theorems on recursively enumerable sets”, Notre Dame J. Formal Logic, 3:2 (1962), 65–74 | DOI | MR