On elementary word functions obtained by bounded prefix concatenation
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 44-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The operation of bounded prefix concatenation (BPC) is introduced on the set of word functions in the alphabet $\{1,2\}$. The class BPC of polynomially computable functions is defined on the basis of this operation and the superposition operation. The class BPC is shown to contain a number of word functions and to be closed with respect to certain known operations. A certain type of two-tape nonerasing Turing machines is introduced, functions from the class BPC are shown to be computable on machines of this type in polynomial time.
Keywords: bounded prefix concatenation, polynomially computable function.
@article{DM_2015_27_3_a3,
     author = {Sergey S. Marchenkov},
     title = {On elementary word functions obtained by bounded prefix concatenation},
     journal = {Diskretnaya Matematika},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a3/}
}
TY  - JOUR
AU  - Sergey S. Marchenkov
TI  - On elementary word functions obtained by bounded prefix concatenation
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 44
EP  - 55
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_3_a3/
LA  - ru
ID  - DM_2015_27_3_a3
ER  - 
%0 Journal Article
%A Sergey S. Marchenkov
%T On elementary word functions obtained by bounded prefix concatenation
%J Diskretnaya Matematika
%D 2015
%P 44-55
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_3_a3/
%G ru
%F DM_2015_27_3_a3
Sergey S. Marchenkov. On elementary word functions obtained by bounded prefix concatenation. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 44-55. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a3/

[1] Kuznetsov A. V., “K teoreme o kanonicheskori forme dlya ordinalno-rekursivnykh funktsii”, Prilozhenie v kn.: R. L. Gudstein, Matematicheskaya logika, Nauka, Moskva, 1961, 149–154

[2] Marchenkov S. S., Elementarnye rekursivnye funktsii, MTsNMO, Moskva, 2003, 112 pp.

[3] Marchenkov, S. S., “Ogranichennaya monotonnaya rekursiya i MG-avtomaty”, Programmirovanie, 2013, no. 6, 3–11

[4] Grzegorczyk, A., “Some classes of recursive functions”, Rozpr. Matemat., 4 (1962), 1–46 | MR

[5] Kalmar, L., “Egyszerü pelda eldönthetelen aritmetikai problemara”, Mat. és fiz. lapok, 50 (1943), 1–23 | MR | Zbl

[6] Skolem, Th., “Proof of some theorems on recursively enumerable sets”, Notre Dame J. Formal Logic, 3:2 (1962), 65–74 | DOI | MR