On the asymptotics of the number of repetition-free Boolean functions in the basis $\{\,\lor,\oplus,\lnot\}$
Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 158-159
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an asymptotic formula for the number $S_n$ of repetition-free Boolean functions of $n$ variables in the basis $\{\,\lor,\oplus,\lnot\}$ for $n\to\infty: S_n\sim cn^{-3/2}\alpha^nn!$, where $c\approx0.1998398363\;,\alpha\approx7.549773429\;.$
Keywords:
repetition-free Boolean function, enumeration, asymptotics.
@article{DM_2015_27_3_a10,
author = {V. A. Voblyi},
title = {On the asymptotics of the number of repetition-free {Boolean} functions in the basis $\{\&,\lor,\oplus,\lnot\}$},
journal = {Diskretnaya Matematika},
pages = {158--159},
publisher = {mathdoc},
volume = {27},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_3_a10/}
}
TY - JOUR
AU - V. A. Voblyi
TI - On the asymptotics of the number of repetition-free Boolean functions in the basis $\{\&,\lor,\oplus,\lnot\}$
JO - Diskretnaya Matematika
PY - 2015
SP - 158
EP - 159
VL - 27
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DM_2015_27_3_a10/
LA - ru
ID - DM_2015_27_3_a10
ER -
V. A. Voblyi. On the asymptotics of the number of repetition-free Boolean functions in the basis $\{\&,\lor,\oplus,\lnot\}$. Diskretnaya Matematika, Tome 27 (2015) no. 3, pp. 158-159. http://geodesic.mathdoc.fr/item/DM_2015_27_3_a10/