Functional limit theorems for the decomposable branching process with two types of particles
Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 22-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A decomposable Galton – Watson process with two types of particles is considered. Particles of the first type produce equal random numbers of particles of both types, particles of the second type produce particles of the second type only. Under the condition that the total number of the first type particles is equal to $N$ the functional limit theorems are proved for the numbers of particles of both types existing at times of the orders of $\sqrt{N}$, of $N$ and of the intermediate orders. \def\acknowledgementname{Funding
Keywords: decomposable Galton – Watson process with several types of particles, functional limit theorems.
@article{DM_2015_27_2_a1,
     author = {V. I. Afanasyev},
     title = {Functional limit theorems for the decomposable branching process with two types of particles},
     journal = {Diskretnaya Matematika},
     pages = {22--44},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_2_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Functional limit theorems for the decomposable branching process with two types of particles
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 22
EP  - 44
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_2_a1/
LA  - ru
ID  - DM_2015_27_2_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Functional limit theorems for the decomposable branching process with two types of particles
%J Diskretnaya Matematika
%D 2015
%P 22-44
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_2_a1/
%G ru
%F DM_2015_27_2_a1
V. I. Afanasyev. Functional limit theorems for the decomposable branching process with two types of particles. Diskretnaya Matematika, Tome 27 (2015) no. 2, pp. 22-44. http://geodesic.mathdoc.fr/item/DM_2015_27_2_a1/

[1] Vatutin V.A., Dyakonova E.E., “Razlozhimye vetvyaschiesya protsessy s fiksirovannym momentom vyrozhdeniya”, Tr. MIAN, 290:3 (2015) (to appear)

[2] Kolchin V.F., Sluchainye otobrazheniya, M.: Nauka, 1984

[3] Drmota M., “On the profile of random trees”, Random Struct. Alg., {10}:4 (1997), 421-451 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] Lamperti J., “Limiting distributions for branching processes”, Univ. California Press., Proc. Fifth Berkeley Sympos. Math. Statist. and Probab., 1967, 225-241

[5] Lindvall T., “Convergence of critical Galton-Watson branching processes”, J. Appl. Probab., {9}:2 (1972), 445-450 | DOI

[6] Billingsli P., Skhodimost veroyatnostnykh mer, M.: Nauka, 1977