Two-dimensional renewal theorems with weak moment conditions and critical Bellman\,--\,Harris branching processes
Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 123-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider critical Bellman – Harris processes with two types of particles. The tail of the lifetime distribution of the first type particles decreases as $o(t^{-2})$, the tail of the lifetime distribution of the second type particles is regularly varying with the index in $(-1,0)$. Such processes are connected with the matrix renewal functions of special two-dimensional renewal processes. V. A. Vatutin and the author have used the asymptotics of these matrix renewal functions and their first and second order increments in the proofs of several limit theorems for branching processes. Here we investigate the properties of such matrix renewal functions under significantly weaker conditions on the lifetime distributions and apply the results to the description of the asymptotics of several moments of branching processes and of their increments. This work was supported by RFBR project 14-01-00318.
Keywords: two-dimensional renewal process, matrix renewal function, critical two-type Bellman – Harris processes, infinite mean lifetime, asymptotics, regularly varying functions.
@article{DM_2015_27_1_a9,
     author = {Valentin A. Topchiy},
     title = {Two-dimensional renewal theorems with weak moment conditions and critical {Bellman\,--\,Harris} branching processes},
     journal = {Diskretnaya Matematika},
     pages = {123--145},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_1_a9/}
}
TY  - JOUR
AU  - Valentin A. Topchiy
TI  - Two-dimensional renewal theorems with weak moment conditions and critical Bellman\,--\,Harris branching processes
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 123
EP  - 145
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_1_a9/
LA  - ru
ID  - DM_2015_27_1_a9
ER  - 
%0 Journal Article
%A Valentin A. Topchiy
%T Two-dimensional renewal theorems with weak moment conditions and critical Bellman\,--\,Harris branching processes
%J Diskretnaya Matematika
%D 2015
%P 123-145
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_1_a9/
%G ru
%F DM_2015_27_1_a9
Valentin A. Topchiy. Two-dimensional renewal theorems with weak moment conditions and critical Bellman\,--\,Harris branching processes. Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 123-145. http://geodesic.mathdoc.fr/item/DM_2015_27_1_a9/

[1] Vatutin V. A., Topchii V. A., “Kriticheskie vetvyaschiesya protsessy Bellmana–Kharrisa s dolgo zhivuschimi chastitsami”, Trudy Matem. in-ta im. V. A. Steklova, 282:2 (2013), 257–287 | MR | Zbl

[2] Vatutin V. A., “Diskretnye predelnye raspredeleniya chisla chastits v vetvyaschikhsya protsessakh Bellmana–Kharrisa s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 24:3 (1979), 503–514 | MR | Zbl

[3] Erickson K. B., “Strong renewal theorems with infinite mean”, Trans. Amer. Math. Soc., 151 (1970), 263–291 | DOI | MR | Zbl

[4] Vatutin V. A., Topchii V. A., “Osnovnaya teorema vosstanovleniya dlya raspredelenii s tyazhelymi khvostami, imeyuschimi indeks $ \beta \in(0,0.5]$”, Teoriya veroyatn. i ee primen., 58:2 (2013), 387–396 | DOI | MR

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, per. s angl., v. 2, Mir, Moskva, 1984, 751 pp.

[6] Bingham N. H., Goldie C. M., Teugels J. L., Regular variation, Cambridge Univ. Press, Cambridge, 1989, 494 pp. | MR | Zbl

[7] Topchii V., “Renewal measure density for distributions with regularly varying tails of order $ \alpha \in(0, 1/2]$”, Workshop on Branching Processes and Their Applications, Lect. Notes Statist., 197, Springer, Berlin, 2010, 109–118 | DOI | MR

[8] Topchii V. A., “Asimptotika proizvodnykh ot funktsii vosstanovleniya dlya raspredelenii bez pervogo momenta s pravilno menyayuschimisya khvostami stepeni $ \beta \in(0.5,1]$”, Diskretnaya matematika, 24:2 (2012), 123–148 | DOI | MR | Zbl

[9] Topchii V. A., “Proizvodnaya plotnosti vosstanovleniya s beskonechnym momentom pri $ \alpha \in(0,1/2]$”, Sib. elektr. matem. izv., 7 (2010), 340–349 | MR

[10] Seneta E., Pravilno menyayuschiesya funktsii, per. s angl., Nauka, Moskva, 1985, 141 pp. | MR