Complexity of implementation of parity functions in the implication--negation basis
Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 73-97
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with circuits in the basis $\{x \to y, \overline{x}\}$. The exact value of the complexity of implementation of an even parity function is obtained and the minimal circuits implementing an odd parity function are described.
Keywords:
circuit, parity function, minimal circuit, complexity circuits.
@article{DM_2015_27_1_a5,
author = {Yu. A. Kombarov},
title = {Complexity of implementation of parity functions in the implication--negation basis},
journal = {Diskretnaya Matematika},
pages = {73--97},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_1_a5/}
}
Yu. A. Kombarov. Complexity of implementation of parity functions in the implication--negation basis. Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 73-97. http://geodesic.mathdoc.fr/item/DM_2015_27_1_a5/