Keywords: parity function, complexity circuits.
@article{DM_2015_27_1_a5,
author = {Yu. A. Kombarov},
title = {Complexity of implementation of parity functions in the implication{\textendash}negation basis},
journal = {Diskretnaya Matematika},
pages = {73--97},
year = {2015},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2015_27_1_a5/}
}
Yu. A. Kombarov. Complexity of implementation of parity functions in the implication–negation basis. Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 73-97. http://geodesic.mathdoc.fr/item/DM_2015_27_1_a5/
[1] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, MGU, M., 1984
[2] Redkin N.P., “Dokazatelstvo minimalnosti nekotorykh skhem iz funktsionalnykh elementov”, Problemy kibernetiki, 23 (1970), 83–101 | MR | Zbl
[3] Redkin N.P., “O minimalnoi realizatsii lineinoi funktsii skhemoi iz funktsionalnykh elementov”, Kibernetika, 6 (1971), 31–38 | MR | Zbl
[4] Redkin N.P., Diskretnaya matematika, Fizmatlit, M., 2009
[5] Ugolnikov A.B., Klassy Posta, Iz-vo Tsentra prikl. issled. pri mekh.-mat. f-te MGU, M., 2008
[6] Shkrebela I.S., “O slozhnosti realizatsii lineinykh bulevykh funktsii skhemami iz funktsionalnykh elementov v bazise $\{x \to y, \overline{x}\} $”, Diskretnaya matematika, 15:4 (2003), 100–112 | DOI | Zbl