Limit theorem for multitype critical branching process evolving in random environment
Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 44-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a multitype critical branching process in an i.i.d. random environment. A functional limit theorem is proved for the logarithm of the number of particles in the process at moments $nt,0\leq t\leq 1,$ $\ $conditioned on its survival up to moment $n\rightarrow \infty $.
Keywords: multitype branching processes, random environment, functional limit theorem.
@article{DM_2015_27_1_a3,
     author = {E. E. D'yakonova},
     title = {Limit theorem for multitype critical branching process evolving in random environment},
     journal = {Diskretnaya Matematika},
     pages = {44--58},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2015_27_1_a3/}
}
TY  - JOUR
AU  - E. E. D'yakonova
TI  - Limit theorem for multitype critical branching process evolving in random environment
JO  - Diskretnaya Matematika
PY  - 2015
SP  - 44
EP  - 58
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2015_27_1_a3/
LA  - ru
ID  - DM_2015_27_1_a3
ER  - 
%0 Journal Article
%A E. E. D'yakonova
%T Limit theorem for multitype critical branching process evolving in random environment
%J Diskretnaya Matematika
%D 2015
%P 44-58
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2015_27_1_a3/
%G ru
%F DM_2015_27_1_a3
E. E. D'yakonova. Limit theorem for multitype critical branching process evolving in random environment. Diskretnaya Matematika, Tome 27 (2015) no. 1, pp. 44-58. http://geodesic.mathdoc.fr/item/DM_2015_27_1_a3/

[1] Smith W.L., Wilkinson W., “On branching processes in random environment”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl

[2] Athreya K. B., Karlin S., “On branching processes with random environments: I”, Ann. Math. Statist., 42:5 (1971), 1499–1520 | DOI | MR | Zbl

[3] Tanny D., “On multitype branching processes in a random environment”, Adv. Appl. Prob., 13:3 (1981), 464–497 | DOI | MR | Zbl

[4] Weissener E. W., “Multitype branching processes in random environments”, J. Appl. Prob., 8:1 (1971), 17–31 | DOI | MR

[5] Kaplan N., “Some results about multidimentional branching processes with random environments”, Ann. Prob., 2:3 (1974), 441–455 | DOI | MR | Zbl

[6] Afanasev V.I., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 5:1 (1993), 45–58 | MR | Zbl

[7] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Prob., 33:2 (2005), 645–673 | DOI | MR | Zbl

[8] Afanasyev V.I., Böinghoff C., Kersting G., Vatutin V.A., “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincare, Probab. Statist., 50:2 (2014), 602–627 | DOI | MR | Zbl

[9] Bansaye V., Böinghoff C., “Lower large deviations for supercritical branching processes in random environment”, Trudy Matem. in-ta im. V.A.Steklova, 282 (2013), 22–41

[10] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primenen., 45:3 (2000), 607–615 | DOI | MR | Zbl

[11] Vatutin V.A., Dyakonova E.E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede, I: predelnye teoremy”, Teoriya veroyatn. i ee primenen., 48:2 (2003), 274–300 | DOI | MR | Zbl

[12] Vatutin V.A., Dyakonova E.E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede, II: konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primenen., 49:2 (2004), 231–268 | DOI | MR | Zbl

[13] Vatutin V.A., Dyakonova E.E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primenen., 51:1 (2006), 22–46 | DOI | MR

[14] Vatutin V.A., Kyprianou A.E., “Branching processes in random environment die slowly”, Algorithms, trees, combin. and probab., Proc. Fifth Colloq. Math. and Comput. Sci., DMTCS, Nancy, 2008, 379–400 | MR

[15] Vatutin V.A., Vakhtel V.I., “Vnezapnoe vyrozhdenie kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Teoriya veroyatn. i ee primenen., 54:3 (2009), 417–438 | DOI | MR | Zbl

[16] Vatutin V.A., Dyakonova E.E., “Asimptoticheskie svoistva mnogotipnykh vetvyaschikhsya protsessov, evolyutsioniruyuschikh v sluchainoi srede”, Diskretnaya matematika, 22:2 (2010), 22–40 | DOI | MR | Zbl

[17] Dyakonova E.E., “Mnogotipnye vetvyaschiesya protsessy Galtona–Vatsona v markovskoi sluchainoi srede”, Teoriya veroyatn. i ee primenen., 55:3 (2011), 592–601 | DOI | MR

[18] Dyakonova E.E., “Mnogotipnye vetvyaschiesya protsessy, evolyutsioniruyuschie v markovskoi sluchainoi srede”, Diskretnaya matematika, 24:3 (2012), 130–151 | DOI | MR | Zbl

[19] Dyakonova E.E., “Mnogotipnye dokriticheskie vetvyaschiesya protsessy v sluchainoi srede”, Trudy Matem. in-ta im. V.A.Steklova, 282 (2013), 87–97 | Zbl

[20] Dyakonova E.E., “Kriticheskie mnogotipnye vetvyaschiesya protsessy v sluchainoi srede”, Diskretnaya matematika, 19:4 (2007), 23–41 | DOI | MR | Zbl

[21] Dyakonova E.E., Geiger J., Vatutin V.A., “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Relat. Fields, 10:2 (2004), 289–306 | MR | Zbl

[22] Kozlov M.V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primenen., 21:4 (1976), 813–825 | MR | Zbl

[23] Athreya K.B., Ney P.E., Branching Processes, Springer, Berlin, 1972, 290 pp. | MR | Zbl

[24] Bertoin J., Doney R.A., “On conditioning a random walk to stay nonnegative”, Ann. Prob., 22 (1994), 2152–2167 | DOI | MR | Zbl

[25] Doney R.A., “Conditional limit theorems for asymptotically stable random walks”, Z. Wahrsch. Verw. Gebiete, 70 (1985), 351–360 | DOI | MR | Zbl

[26] Doney R.A., “Spitzer's condition and ladder variables in random walks”, Theory Probab. Relat. Fields, 101 (1995), 577–580 | DOI | MR | Zbl

[27] Durrett R., “Conditional limit theorems for some null reccurent Markov processes”, Ann. Prob., 6:5 (1978), 798–828 | DOI | MR | Zbl

[28] Feller V., Vvedenie v teoriyu veroyatnoctei i ee prilozheniya, v. 2, Mir, Moskva, 1984, 738 pp.

[29] Shiryaev A.N., Veroyatnoct, Nauka, Moskva, 1989, 640 pp. | MR