On the probability of coincidence of cycle lengths for independent random permutations with given number of cycles
Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 110-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

From the set of all permutations of the degree $n$ with a given number $ N \le n $ of cycles two permutations are choosed randomly, uniformly and independently. The cycles of each permutation are numbered in some of $N!$ possible ways. We study the coincidence probability of the cycle lengths of permutations for a given numbering. This probability up to a suitably selected renumbering of cycles of the first permutation equals to the probability of similarity of these permutations. The asymptotic estimates of the coincidence probability of the cycle lengths are obtained for five types of relations between $N,n\to\infty$.
Keywords: coincidence probability, cycle lengths, random permutations, generalized scheme of random allocations, Stirling numbers of the first kind.
@article{DM_2014_26_4_a10,
     author = {A. N. Timashev},
     title = {On the probability of coincidence of cycle lengths for independent random permutations with given number of cycles},
     journal = {Diskretnaya Matematika},
     pages = {110--118},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a10/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - On the probability of coincidence of cycle lengths for independent random permutations with given number of cycles
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 110
EP  - 118
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_4_a10/
LA  - ru
ID  - DM_2014_26_4_a10
ER  - 
%0 Journal Article
%A A. N. Timashev
%T On the probability of coincidence of cycle lengths for independent random permutations with given number of cycles
%J Diskretnaya Matematika
%D 2014
%P 110-118
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_4_a10/
%G ru
%F DM_2014_26_4_a10
A. N. Timashev. On the probability of coincidence of cycle lengths for independent random permutations with given number of cycles. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 110-118. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a10/

[1] Kolchin V.F., Sluchainye otobrazheniya, Nauka, M., 1984 | MR

[2] Kolchin V.F., Sluchainye grafy, Nauka, M., 2000 | MR

[3] Timashev A.N., Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, TVP, M., 2011, 312 pp.

[4] Timashev A.N., Bolshie ukloneniya v veroyatnostnoi kombinatorike, Izd. dom “Akademiya”, M., 2011

[5] Timashev A.N., “Ob asimptoticheskikh razlozheniyakh dlya raspredeleniya chisla tsiklov v sluchainoi podstanovke”, Diskretnaya matematika, 15:3 (2003), 117–127 | DOI

[6] Kolchin A.V., Kolchin V.F., “O perekhode raspredelenii summ nezavisimykh odinakovo raspredelënnykh sluchainykh velichin s odnoi reshetki na druguyu v obobschennoi skheme razmescheniya”, Diskretnaya matematika, 18:4 (2006), 113–127 | DOI | MR | Zbl