Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2014_26_4_a10, author = {A. N. Timashev}, title = {On the probability of coincidence of cycle lengths for independent random permutations with given number of cycles}, journal = {Diskretnaya Matematika}, pages = {110--118}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a10/} }
TY - JOUR AU - A. N. Timashev TI - On the probability of coincidence of cycle lengths for independent random permutations with given number of cycles JO - Diskretnaya Matematika PY - 2014 SP - 110 EP - 118 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2014_26_4_a10/ LA - ru ID - DM_2014_26_4_a10 ER -
%0 Journal Article %A A. N. Timashev %T On the probability of coincidence of cycle lengths for independent random permutations with given number of cycles %J Diskretnaya Matematika %D 2014 %P 110-118 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2014_26_4_a10/ %G ru %F DM_2014_26_4_a10
A. N. Timashev. On the probability of coincidence of cycle lengths for independent random permutations with given number of cycles. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 110-118. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a10/
[1] Kolchin V.F., Sluchainye otobrazheniya, Nauka, M., 1984 | MR
[2] Kolchin V.F., Sluchainye grafy, Nauka, M., 2000 | MR
[3] Timashev A.N., Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, TVP, M., 2011, 312 pp.
[4] Timashev A.N., Bolshie ukloneniya v veroyatnostnoi kombinatorike, Izd. dom “Akademiya”, M., 2011
[5] Timashev A.N., “Ob asimptoticheskikh razlozheniyakh dlya raspredeleniya chisla tsiklov v sluchainoi podstanovke”, Diskretnaya matematika, 15:3 (2003), 117–127 | DOI
[6] Kolchin A.V., Kolchin V.F., “O perekhode raspredelenii summ nezavisimykh odinakovo raspredelënnykh sluchainykh velichin s odnoi reshetki na druguyu v obobschennoi skheme razmescheniya”, Diskretnaya matematika, 18:4 (2006), 113–127 | DOI | MR | Zbl