Stationary distribution of the player rating in the Elo model with one adversary
Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the process of fluctuation of the player rating in the Elo model in an infinite series of games with the same adversary. Under some assumptions on the model parameters, this process is shown to have a stationary distribution; its median is found for players of the same skill.
Keywords: models of rating systems, Markov chain, iterated function systems, limit distributions.
@article{DM_2014_26_4_a0,
     author = {V. A. Avdeev},
     title = {Stationary distribution of the player rating in the {Elo} model with one adversary},
     journal = {Diskretnaya Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_4_a0/}
}
TY  - JOUR
AU  - V. A. Avdeev
TI  - Stationary distribution of the player rating in the Elo model with one adversary
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 3
EP  - 14
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_4_a0/
LA  - ru
ID  - DM_2014_26_4_a0
ER  - 
%0 Journal Article
%A V. A. Avdeev
%T Stationary distribution of the player rating in the Elo model with one adversary
%J Diskretnaya Matematika
%D 2014
%P 3-14
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_4_a0/
%G ru
%F DM_2014_26_4_a0
V. A. Avdeev. Stationary distribution of the player rating in the Elo model with one adversary. Diskretnaya Matematika, Tome 26 (2014) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/DM_2014_26_4_a0/

[1] P. Diaconis, D. Freedman, “Iterated random functions”, SIAM Review, 41:1 (1999), 45–76 | DOI | MR | Zbl

[2] T. Fenner, M. Levene, G. Loizou, “A discrete evolutionary model for chess players' ratings”, IEEE Trans. Comput. Intell. AI in Games, 4:2 (2012), 84–93 | DOI

[3] M. E. Glickman, “A comprehensive guide to chess ratings”, Amer. Chess J., 3 (1995), 59–102

[4] T. Kamihigashi, J. Stachurski, “Asymptotics of stochastic recursive economies under monotonicity”, KIER Working Papers, 666 (2009)

[5] G. Letac, “A contraction principle for certain Markov chains and its applications”, Random matrices and their applications, Contemp. Math., 50, Amer. Math. Soc., 1986, 263–273 | DOI | MR

[6] D. Steinsaltz, “Zeno's walk: A random walk with refinements”, Probab. Theory Related Fields, 107:1 (1997), 99–121 | DOI | MR | Zbl

[7] D. Steinsaltz, “Locally contractive iterated function systems”, Ann. Prob., 27:4 (1999), 1952–1979 | DOI | MR | Zbl

[8] Ö. Stenflo, “A survey of average contractive iterated function systems”, J. Differ. Equations Appl., 18:8 (2012), 1355–1380 | DOI | MR | Zbl