Characteristic submodules of injective modules over strongly prime rings
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 121-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2014_26_3_a9,
     author = {A. A. Tuganbaev},
     title = {Characteristic submodules of injective modules over strongly prime rings},
     journal = {Diskretnaya Matematika},
     pages = {121--126},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a9/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Characteristic submodules of injective modules over strongly prime rings
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 121
EP  - 126
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a9/
LA  - ru
ID  - DM_2014_26_3_a9
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Characteristic submodules of injective modules over strongly prime rings
%J Diskretnaya Matematika
%D 2014
%P 121-126
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a9/
%G ru
%F DM_2014_26_3_a9
A. A. Tuganbaev. Characteristic submodules of injective modules over strongly prime rings. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 121-126. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a9/

[1] Alahmadi A., Er N., Jain S. K., “Modules which are invariant under monomorphisms of their injective hulls”, J. Australian Math. Soc., 79:3 (2005), 349–360 | DOI | MR | Zbl

[2] Dickson S. E., Fuller K. R., “Algebras for which every indecomposable right module is invariant in its injective envelope”, Pacific J. Math., 31:3 (1969), 655–658 | DOI | MR | Zbl

[3] Er N., Singh S., Srivastava A. K., “Rings and modules which are stable under automorphisms of their injective hulls”, J. Algebra, 379 (2013), 223–229 | DOI | MR | Zbl

[4] Goodearl K. R., Ring Theory: Nonsingular Rings and Modules, Marcel Dekker, New York, 1976, 224 pp. | MR | Zbl

[5] Guil Asensio P. A., Srivastava A. K., “Automorphism-invariant modules satisfy the exchange property”, J. Algebra, 388 (2013), 101–106 | DOI | MR | Zbl

[6] Handelman D., Lawrence J., “Strongly prime rings”, Trans. Amer. Math. Soc., 211 (1975), 209–223 | DOI | MR | Zbl

[7] Jain S. K., Singh S., “Quasi-injective and pseudo-injective modules”, Canadian Math. Bull., 18:3 (1975), 359–366 | DOI | MR | Zbl

[8] Lawrence J., “A singular primitive ring”, Trans. Amer. Math. Soc., 45:1 (1974), 59–62 | DOI | MR | Zbl

[9] Lee T. K., Zhou Y., “Modules which are invariant under automorphisms of their injective hulls”, J. Algebra Appl., 12:2 (2013), 1250159, 9 pp. | DOI | MR | Zbl

[10] Singh S., Srivastava A. K., “Rings of invariant module type and automorphism-invariant modules”, Contemporary Mathematics, 609, Amer. Math. Soc., 2014, 299–311 | DOI | MR | Zbl

[11] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht–Boston–London, 1998 | MR | Zbl

[12] Tuganbaev A. A., “Avtomorfizmy podmodulei i ikh prodolzhenie”, Diskret. matem., 25:1 (2013), 144–151 | DOI | MR | Zbl

[13] Tuganbaev A. A., “Kharakteristicheskie podmoduli in'ektivnykh modulei”, Diskret. matem., 25:2 (2013), 85–90 | DOI | MR | Zbl

[14] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991, 616 pp. | MR | Zbl