Nonnegative basis of a lattice
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 127-135
A nonnegative basis of a complete lattice is constructed. The criterion of existence of a nonnegative basis of an arbitrary lattice is proved. The problem of existence of a lattice basis from an arbitrary convex cone is investigated.
Keywords:
nonnegative basis of a lattice, integer lattice, convex cone.
@article{DM_2014_26_3_a10,
author = {I. V. Cherednik},
title = {Nonnegative basis of a lattice},
journal = {Diskretnaya Matematika},
pages = {127--135},
year = {2014},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a10/}
}
I. V. Cherednik. Nonnegative basis of a lattice. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 127-135. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a10/
[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR | Zbl
[3] Glukhov M. M., Kruglov I. A., Pichkur A. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody kriptografii, Lan, SPb., 2011, 394 pp. | Zbl
[4] Rokafellar R., Vypuklyi analiz, Mir, Moskva, 1973, 472 pp.