Nonnegative basis of a lattice
Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 127-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonnegative basis of a complete lattice is constructed. The criterion of existence of a nonnegative basis of an arbitrary lattice is proved. The problem of existence of a lattice basis from an arbitrary convex cone is investigated.
Keywords: nonnegative basis of a lattice, integer lattice, convex cone.
@article{DM_2014_26_3_a10,
     author = {I. V. Cherednik},
     title = {Nonnegative basis of a lattice},
     journal = {Diskretnaya Matematika},
     pages = {127--135},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a10/}
}
TY  - JOUR
AU  - I. V. Cherednik
TI  - Nonnegative basis of a lattice
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 127
EP  - 135
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_3_a10/
LA  - ru
ID  - DM_2014_26_3_a10
ER  - 
%0 Journal Article
%A I. V. Cherednik
%T Nonnegative basis of a lattice
%J Diskretnaya Matematika
%D 2014
%P 127-135
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_3_a10/
%G ru
%F DM_2014_26_3_a10
I. V. Cherednik. Nonnegative basis of a lattice. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 127-135. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a10/

[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR | Zbl

[3] Glukhov M. M., Kruglov I. A., Pichkur A. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody kriptografii, Lan, SPb., 2011, 394 pp. | Zbl

[4] Rokafellar R., Vypuklyi analiz, Mir, Moskva, 1973, 472 pp.