Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2014_26_3_a1, author = {E. E. Dyakonova}, title = {Branching processes in {a~Markov} random environment}, journal = {Diskretnaya Matematika}, pages = {10--29}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2014_26_3_a1/} }
E. E. Dyakonova. Branching processes in a~Markov random environment. Diskretnaya Matematika, Tome 26 (2014) no. 3, pp. 10-29. http://geodesic.mathdoc.fr/item/DM_2014_26_3_a1/
[1] Smith W.L., Wilkinson W., “On branching processes in random environment”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl
[2] Athreya K. B., Karlin S., “On branching processes with random environments: I”, Ann. Math. Statist., 42:5 (1971), 1499–1520 | DOI | MR | Zbl
[3] Billingli P., Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1977 | MR
[4] Billinsley P., “The invariance principle for dependent random variables”, Trans. Amer. Math. Soc., 83:1 (1956), 250–268 | DOI | MR
[5] Dub Dzh. L., Veroyatnostnye protsessy, IL, Moskva, 1956
[6] Kozlov M. V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primenen., 21:4 (1976), 813–825 | MR | Zbl
[7] Afanasev V. I., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 5:1 (1993), 45–58 | MR | Zbl
[8] Afanasev V. I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 9:3 (1997), 52–67 | DOI | MR | Zbl
[9] Afanasev V. I., “O maksimume kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 11:2 (1999), 86–102 | DOI | MR | Zbl
[10] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Prob., 33:2 (2005), 645–673 | DOI | MR | Zbl
[11] Afanasyev V. I., Böinghoff K., Kersting G., Vatutin V. A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl
[12] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primenen., 45:3 (2000), 607–615 | DOI | MR | Zbl
[13] Borovkov A. A., Teoriya veroyatnoctei, Nauka, M., 1999, 430 pp.
[14] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede, I: predelnye teoremy”, Teoriya veroyatn. i ee primenen., 48:2 (2003), 274–300 | DOI | MR | Zbl
[15] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede, II: konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primenen., 49:2 (2004), 231–268 | DOI | MR | Zbl
[16] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primenen., 51:1 (2006), 22–46 | DOI | MR | Zbl
[17] Vatutin V. A., Vakhtel V. I., “Vnezapnoe vyrozhdenie kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Teoriya veroyatn. i ee primenen., 54:3 (2009), 417–438 | DOI | MR | Zbl
[18] Dyakonova E. E., “Mnogotipnye vetvyaschiesya protsessy Galtona–Vatsona v markovskoi sluchainoi srede”, Teoriya veroyatn. i ee primenen., 56:3 (2011), 592–601 | DOI | MR
[19] Dyakonova E. E., “Mnogotipnye vetvyaschiesya protsessy, evolyutsioniruyuschie v markovskoi sluchainoi srede”, Diskretnaya matematika, 24:3 (2012), 130–151 | DOI | MR | Zbl
[20] Dyakonova E. E., Geiger J., Vatutin V. A., “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10:2 (2004), 289–306 | MR | Zbl
[21] Le Page E., Ye Y., “The survival probability of a critical branching process in a Markovian random environment”, C. R. Acad. Sci. Paris Ser. I, 348 (2010), 301–304 | DOI | MR | Zbl
[22] D'Souza J. C., Hambly B. M., “On the survival probability of a branching process in a random environment”, Adv. Appl. Prob., 29:1 (1997), 38–55 | DOI | MR | Zbl