Functional limit theorems for high-level subcritical branching processes in random environment
Diskretnaya Matematika, Tome 26 (2014) no. 2, pp. 6-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2014_26_2_a1,
     author = {V. I. Afanasyev},
     title = {Functional limit theorems for high-level subcritical branching processes in random environment},
     journal = {Diskretnaya Matematika},
     pages = {6--24},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_2_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Functional limit theorems for high-level subcritical branching processes in random environment
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 6
EP  - 24
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_2_a1/
LA  - ru
ID  - DM_2014_26_2_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Functional limit theorems for high-level subcritical branching processes in random environment
%J Diskretnaya Matematika
%D 2014
%P 6-24
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_2_a1/
%G ru
%F DM_2014_26_2_a1
V. I. Afanasyev. Functional limit theorems for high-level subcritical branching processes in random environment. Diskretnaya Matematika, Tome 26 (2014) no. 2, pp. 6-24. http://geodesic.mathdoc.fr/item/DM_2014_26_2_a1/

[1] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] Afanasyev V. I., “On the maximum of a subcritical branching process in a random environment”, Stochastic Process. Appl., 93:1 (2001), 84–107 | DOI | MR

[3] Afanasev V. I., “Vysokourovnevye dokriticheskie vetvyaschiesya protsessy v sluchainoi srede”, Tr. MIAN, 282, MAIK, M., 2013, 10–21 | DOI

[4] Afanasev V. I., “Printsip invariantnosti dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede, dostigayuschego vysokogo urovnya”, Teoriya veroyatn. i ee primen., 54:1 (2009), 3–17 | DOI | Zbl

[5] Afanasyev V. I., “New invariance principles for critical branching process in random environment”, Advances in data analysis. Stat. Ind. Technol., 2010, 105–115, Boston | DOI | MR

[6] Afanasev V. I., “Brounovskii pryzhok v vysotu”, Teoriya veroyatn. i ee primen., 55:2 (2010), 209–225 | DOI | MR

[7] Gut A., Stopped random walks, Springer-Verlag, New York, 1988 | MR | Zbl

[8] Siegmund D., Sequential analysis tests and confidence intervals, Springer, New York, 1985 | MR | Zbl

[9] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR