Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2014_26_2_a1, author = {V. I. Afanasyev}, title = {Functional limit theorems for high-level subcritical branching processes in random environment}, journal = {Diskretnaya Matematika}, pages = {6--24}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2014_26_2_a1/} }
V. I. Afanasyev. Functional limit theorems for high-level subcritical branching processes in random environment. Diskretnaya Matematika, Tome 26 (2014) no. 2, pp. 6-24. http://geodesic.mathdoc.fr/item/DM_2014_26_2_a1/
[1] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[2] Afanasyev V. I., “On the maximum of a subcritical branching process in a random environment”, Stochastic Process. Appl., 93:1 (2001), 84–107 | DOI | MR
[3] Afanasev V. I., “Vysokourovnevye dokriticheskie vetvyaschiesya protsessy v sluchainoi srede”, Tr. MIAN, 282, MAIK, M., 2013, 10–21 | DOI
[4] Afanasev V. I., “Printsip invariantnosti dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede, dostigayuschego vysokogo urovnya”, Teoriya veroyatn. i ee primen., 54:1 (2009), 3–17 | DOI | Zbl
[5] Afanasyev V. I., “New invariance principles for critical branching process in random environment”, Advances in data analysis. Stat. Ind. Technol., 2010, 105–115, Boston | DOI | MR
[6] Afanasev V. I., “Brounovskii pryzhok v vysotu”, Teoriya veroyatn. i ee primen., 55:2 (2010), 209–225 | DOI | MR
[7] Gut A., Stopped random walks, Springer-Verlag, New York, 1988 | MR | Zbl
[8] Siegmund D., Sequential analysis tests and confidence intervals, Springer, New York, 1985 | MR | Zbl
[9] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR