An estimate of the approximation accuracy in B.~A.~Sevastyanov's limit theorem and its application in the problem of random inclusions
Diskretnaya Matematika, Tome 26 (2014) no. 1, pp. 75-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate of the accuracy of the Poisson approximation in B. A. Sevastyanov's theorem providing conditions for the distribution of the sum of random indicators to converge to the Poisson distribution is obtained. This result is applied to estimate the rate of convergence to the limit Poisson distribution in a theorem on the number of solutions of systems of random inclusions.
Keywords: sums of random indicators, Poisson approximation, systems of random inclusions over a finite field.
@article{DM_2014_26_1_a5,
     author = {V. A. Kopyttsev and V. G. Mikhailov},
     title = {An estimate of the approximation accuracy in {B.~A.~Sevastyanov's} limit theorem and its application in the problem of random inclusions},
     journal = {Diskretnaya Matematika},
     pages = {75--84},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2014_26_1_a5/}
}
TY  - JOUR
AU  - V. A. Kopyttsev
AU  - V. G. Mikhailov
TI  - An estimate of the approximation accuracy in B.~A.~Sevastyanov's limit theorem and its application in the problem of random inclusions
JO  - Diskretnaya Matematika
PY  - 2014
SP  - 75
EP  - 84
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2014_26_1_a5/
LA  - ru
ID  - DM_2014_26_1_a5
ER  - 
%0 Journal Article
%A V. A. Kopyttsev
%A V. G. Mikhailov
%T An estimate of the approximation accuracy in B.~A.~Sevastyanov's limit theorem and its application in the problem of random inclusions
%J Diskretnaya Matematika
%D 2014
%P 75-84
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2014_26_1_a5/
%G ru
%F DM_2014_26_1_a5
V. A. Kopyttsev; V. G. Mikhailov. An estimate of the approximation accuracy in B.~A.~Sevastyanov's limit theorem and its application in the problem of random inclusions. Diskretnaya Matematika, Tome 26 (2014) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/DM_2014_26_1_a5/

[1] Sevastyanov B. A., “Predelnyi zakon Puassona v skheme summ zavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primenen., 17:4 (1972), 733–738 | MR | Zbl

[2] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976, 224 pp. | MR | Zbl

[3] Mikhailov V. G., “Predelnaya teorema Puassona v skheme razmescheniya chastits komplektami”, Teoriya veroyatn. i ee primen., 22:1 (1977), 155–160 | MR | Zbl

[4] Zubkov A. M., Mikhailov V. G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i ee primen., 19:1 (1974), 173–181 | MR | Zbl

[5] Mikhailov V. G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s mnogokratnymi dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i ee primen., 19:1 (1974), 182–187 | MR | Zbl

[6] Buravlev S. M., “Povtoreniya s tochnostyu do perestanovok v posledovatelnosti nezavisimykh ispytanii”, Diskretnaya matematika, 11:2 (1999), 53–75 | DOI | MR | Zbl

[7] Buravlev S. M., “Povtoreniya s tochnostyu do perestanovok, obrazuyuschikh latinskii pryamougolnik”, Diskretnaya matematika, 12:1 (2000), 24–46 | DOI | MR | Zbl

[8] Klykova N. V., “Predelnoe raspredelenie chisla sovpadayuschikh promezhutkov”, Teoriya veroyatn. i ee primen., 47:1 (2002), 147–152 | DOI | MR | Zbl

[9] Kruglov V. I., “Predelnye raspredeleniya chisla naborov, udovletvoryayuschikh lineinomu sootnosheniyu”, Diskretnaya matematika, 20:4 (2008), 120–135 | DOI | MR | Zbl

[10] Mikhailov V. G., Nekotorye predelnye teoremy dlya summ zavisimykh sluchainykh velichin, Diss. na soisk. uch. st-ni kand. fiz.-matem. nauk, MIAN, Moskva, 1974

[11] Mikhailov V. G., “O predelnoi teoreme B. A. Sevastyanova dlya summ zavisimykh sluchainykh indikatorov”, Obozr. prikl. i promyshl. matem., 10:3 (2003), 571–578

[12] Gaas V. V., “Puassonovskie predelnye sovmestnye raspredeleniya v skheme sluchainogo razmescheniya chastits dvukh tipov”, Teoriya veroyatn. i ee primen., 52:2 (2007), 351–358 | DOI | MR | Zbl

[13] Kopyttsev V. A., “O chisle reshenii sistem lineinykh bulevykh uravnenii v mnozhestve vektorov, obladayuschikh zadannym chislom edinits”, Diskretnaya matematika, 14:4 (2002), 87–109 | DOI | MR | Zbl

[14] Kopyttsev V. A., “O chisle reshenii sistemy sluchainykh lineinykh uravnenii”, Diskretnaya matematika, 18:1 (2006), 40–62 | DOI | MR | Zbl

[15] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla spetsialnykh reshenii sluchainogo lineinogo vklyucheniya”, Diskretnaya matematika, 22:2 (2010), 3–21 | DOI | MR | Zbl

[16] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 1:4 (2010), 63–84

[17] Kopyttsev V. A., Mikhailov V. G., “O raspredelenii chisel reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 2:2 (2011), 55–80

[18] Kopyttsev V. A., Mikhailov V. G., “Predelnye teoremy puassonovskogo tipa dlya obobschennogo lineinogo vklyucheniya”, Diskretnaya matematika, 24:3 (2012), 108–121 | DOI | MR | Zbl

[19] Mikhailov V. G., “Yavnye otsenki v predelnykh teoremakh dlya summ indikatorov”, Obozr. prikl. i promyshl. matem., 1:4 (1994), 580–617

[20] Zubkov A. M., “Neravenstva dlya veroyatnostei perekhodov s zaprescheniyami i ikh primeneniya”, Matem. sb., 109(151):4(8) (1979), 491–532 | MR | Zbl

[21] Barbour A. D., Holst L., Janson S., Poisson Approximation, Oxford University Press, Oxford, 1992 | MR | Zbl