Lower estimate of the square-to-linear ratio for regular Peano curves
Diskretnaya Matematika, Tome 25 (2013) no. 4, pp. 66-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_4_a6,
     author = {K. E. Bauman},
     title = {Lower estimate of the square-to-linear ratio for regular {Peano} curves},
     journal = {Diskretnaya Matematika},
     pages = {66--73},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_4_a6/}
}
TY  - JOUR
AU  - K. E. Bauman
TI  - Lower estimate of the square-to-linear ratio for regular Peano curves
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 66
EP  - 73
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_4_a6/
LA  - ru
ID  - DM_2013_25_4_a6
ER  - 
%0 Journal Article
%A K. E. Bauman
%T Lower estimate of the square-to-linear ratio for regular Peano curves
%J Diskretnaya Matematika
%D 2013
%P 66-73
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_4_a6/
%G ru
%F DM_2013_25_4_a6
K. E. Bauman. Lower estimate of the square-to-linear ratio for regular Peano curves. Diskretnaya Matematika, Tome 25 (2013) no. 4, pp. 66-73. http://geodesic.mathdoc.fr/item/DM_2013_25_4_a6/

[1] Schepin E. V., “O fraktalnykh krivykh Peano”, Trudy MIAN, 247, 2004, 204–303 | MR | Zbl

[2] Bauman K. E., “Koeffitsient rastyazheniya krivoi Peano–Gilberta”, Matem. zametki, 80:5 (2006), 643–656 | DOI | MR | Zbl

[3] Bauman K. E., “Odnostoronnie krivye Peano fraktalnogo roda 9”, Trudy MIAN, 275, 2011, 55–67 | MR

[4] Schepin E. V., Bauman K. E., “Minimalnaya krivaya Peano”, Geometriya, topologiya i matematicheskaya fizika. I, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika S. P. Novikova, Trudy MIAN, 263, MAIK, Moskva, 2008, 251–271 | MR | Zbl

[5] Schepin E. V., Bauman K. E., “O krivykh Peano fraktalnogo roda 9”, Modelirovanie i analiz dannykh, Trudy fakulteta informatsionnykh tekhnologii MGPPU, 1, RUSAVIA, Moskva, 2004, 79–89

[6] Haverkort H., Walderveen F., Locality and bounding-box quality of two-dimensional space-filling curves, arXiv: 0806.4787v2[cs.CG]

[7] Niedermeier R., Reinhardt K., Sanders P., “Towards optimal locality in mesh-indexings”, Discrete Appl. Math., 117:1–3 (2002), 211–237 | DOI | MR | Zbl

[8] Gotsman C., Lindenbaum M., “On the tetric properties of discrete space-filling curves”, IEEE Trans. Image Proc., 5:5 (1996), 794–797 | DOI