Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2013_25_4_a2, author = {A. A. Letunovskii}, title = {Cycle indices of an automaton}, journal = {Diskretnaya Matematika}, pages = {24--29}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2013_25_4_a2/} }
A. A. Letunovskii. Cycle indices of an automaton. Diskretnaya Matematika, Tome 25 (2013) no. 4, pp. 24-29. http://geodesic.mathdoc.fr/item/DM_2013_25_4_a2/
[1] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, Moskva, 1985 | MR | Zbl
[2] Maltsev A. I., Iterativnye algebry Posta, Izd-vo IM SO AN SSSR, Novosibirsk, 1976 | MR
[3] Loomis H. H. (Jr.), “Completeness of sets of delayed logic devices”, IEEE Trans. Electronic Computers, EC-14 (1965), 157–172 | DOI | Zbl
[4] Babin D. N., “O polnote dvukhmestnykh avtomatnykh funktsii otnositelno superpozitsii”, Diskret. matem., 1:4 (1989), 86–91 | MR | Zbl
[5] Letunovskii A. A., “O vyrazimosti konstantnykh avtomatov superpozitsiyami”, Intellektualnye sistemy, 13:1–4 (2009), 397–406 | MR
[6] Aleshin S. V., “Ob odnom sledstvii teoremy Krona–Roudza”, Diskret. matem., 11:4 (1999), 101–109 | DOI | MR | Zbl
[7] Babin D. N., “O superpozitsiyakh ogranichenno determinirovannykh funktsii ogranichennogo vesa”, Logiko-algebraicheskie konstruktsii, Tver, 1992, 21–27 | MR
[8] Letunovskii A. A., “O vyrazimosti superpozitsiyami avtomatov s razreshimymi gruppami”, Intellektualnye sistemy, 14:1–4 (2010), 379–392 | MR
[9] Letunovskii A. A., “O zadache vyrazimosti avtomatov otnositelno superpozitsii dlya sistem s fiksirovannoi dobavkoi”, Intellektualnye sistemy (to appear)