On the number of cyclic points of random $A$-mapping
Diskretnaya Matematika, Tome 25 (2013) no. 3, pp. 116-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_3_a8,
     author = {A. L. Yakymiv},
     title = {On the number of cyclic points of random $A$-mapping},
     journal = {Diskretnaya Matematika},
     pages = {116--127},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_3_a8/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - On the number of cyclic points of random $A$-mapping
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 116
EP  - 127
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_3_a8/
LA  - ru
ID  - DM_2013_25_3_a8
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T On the number of cyclic points of random $A$-mapping
%J Diskretnaya Matematika
%D 2013
%P 116-127
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_3_a8/
%G ru
%F DM_2013_25_3_a8
A. L. Yakymiv. On the number of cyclic points of random $A$-mapping. Diskretnaya Matematika, Tome 25 (2013) no. 3, pp. 116-127. http://geodesic.mathdoc.fr/item/DM_2013_25_3_a8/

[1] Bender E. A., “Asymptotic methods in enumeration”, SIAM Review, 16:4 (1974), 485–515 | DOI | MR | Zbl

[2] Bolotnikov Yu. V., Sachkov V. N., Tarakanov V. E., “Asimptoticheskaya normalnost nekotorykh velichin, svyazannykh s tsiklovoi strukturoi sluchainykh podstanovok”, Matem. sb., 99(141):1 (1976), 121–133 | MR | Zbl

[3] Vladimirov V. S., Zavyalov B. I., “Tauberovy teoremy v kvantovoi teorii polya”, Itogi nauki i tekhniki: Sovremennye problemy matematiki, 15, VINITI, 1980, 95–130 | MR | Zbl

[4] Volynets L. M., “Primer nestandartnoi asimptotiki chisla podstanovok s ogranicheniyami na dliny tsiklov”, Veroyatn. protsessy i ikh prilozheniya, MIEM, Moskva, 1989, 85–90 | MR

[5] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR, ser. mat., 8:1 (1944), 3–48 | MR | Zbl

[6] Grusho A. A., “Properties of random permutations with constraints on the maximum cycle length”, Proc. 3-rd Intern. Petrozavodsk Conf. Probab. Methods in Discrete Math., 1993, 459–469 | MR

[7] Zubkov A. M., “Vychislenie raspredelenii kharakteristik chisel komponent i tsiklicheskikh tochek sluchainogo otobrazheniya”, Matem. vopr. kriptogr., 1:2 (2010), 5–18

[8] Ivchenko G. I., Medvedev Yu. I., “O sluchainykh podstanovkakh”, Trudy po diskretnoi matematike, 5, Fizmatlit, Moskva, 2002, 73–92

[9] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, Moskva, 1983 | MR

[10] Kolchin A. V., “Uravneniya, soderzhaschie neizvestnuyu podstanovku”, Diskretnaya matematika, 6:1 (1994), 100–115 | MR | Zbl

[11] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984 | MR | Zbl

[12] Kolchin V. F., “The number of permutations with cycle lengths from a fixed set”, Random Graph' 89, Wiley, New York, 1992, 139–149 | MR | Zbl

[13] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2000 | MR | Zbl

[14] Manstavicius E., “On random permutations without cycles of some lengths”, Period. Math. Hung., 42:1–2 (2001), 37–44 | DOI | MR | Zbl

[15] Mineev M. P., Pavlov A. I., “Ob uravnenii v podstanovkakh”, Trudy MIAN SSSR, 142, 1976, 182–194 | MR | Zbl

[16] Pavlov A. I., “O dvukh klassakh podstanovok s teoretiko-chislovymi ogranicheniyami na dliny tsiklov”, Matem. zametki, 62:6 (1997), 881–891 | DOI | MR | Zbl

[17] Pavlov Yu. L., Sluchainye lesa, Karelskii nauchnyi tsentr RAN, Petrozavodsk, 1996

[18] Pavlov Yu. L., “Predelnye teoremy dlya ob'ëmov derevev nepomechennogo grafa sluchainogo otobrazheniya”, Diskretnaya matematika, 16:3 (2004), 63–75 | DOI | MR | Zbl

[19] Postnikov A. G., Vvedenie v analiticheskuyu teoriyu chisel, Nauka, Moskva, 1971 | MR | Zbl

[20] Sachkov V. N., “Otobrazheniya konechnogo mnozhestva s ogranicheniyami na kontur i vysotu”, Teoriya veroyatn. i ee primen., 17:4 (1972), 679–694 | MR | Zbl

[21] Sachkov V. N., “Sluchainye otobrazheniya ogranichennoi vysoty”, Teoriya veroyatn. i ee primen., 18:1 (1973), 122–132 | MR | Zbl

[22] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, Moskva, 1977

[23] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, Moskva, 1978 | MR | Zbl

[24] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, Moskva, 2004

[25] Sevastyanov B. A., “Skhodimost po raspredeleniyu sluchainykh otobrazhenii konechnykh mnozhestv k vetvyaschimsya protsessam”, Diskret. matem., 17:1 (2005), 18–21 | DOI | MR | Zbl

[26] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, Moskva, 1985 | MR | Zbl

[27] Timashev A. N., “Sluchainye otobrazheniya konechnykh mnozhestv s izvestnym chislom komponent”, Teoriya veroyatn. i ee primen., 48:4 (2003), 818–828 | DOI | MR | Zbl

[28] Timashev A. N., “Predelnye teoremy v skhemakh razmeschenii chastits po razlichnym yacheikam s ogranicheniyami na zapolneniya yacheek”, Teoriya veroyatn. i eë primen., 49:4 (2004), 712–725 | DOI | MR | Zbl

[29] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, Moskva, 1984 | Zbl

[30] Cheplyukova I. A., “Odin sluchai predelnogo raspredeleniya chisla tsiklicheskikh vershin v sluchainom otobrazhenii”, Diskretnaya matematika, 16:3 (2004), 76–84 | DOI | MR | Zbl

[31] Yakymiv A. L., Veroyatnostnye prilozheniya tauberovykh teorem, Fizmatlit, Moskva, 2005 | Zbl

[32] Yakymiv A. L., “O chisle $A$-otobrazhenii”, Matematicheskie zametki, 86:1 (2009), 139–147 | DOI | MR | Zbl