Oscillating random walk and the Hadamard product of rational functions
Diskretnaya Matematika, Tome 25 (2013) no. 3, pp. 96-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_3_a7,
     author = {E. A. Potekhina and M. I. Tolovikov},
     title = {Oscillating random walk and the {Hadamard} product of rational functions},
     journal = {Diskretnaya Matematika},
     pages = {96--115},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_3_a7/}
}
TY  - JOUR
AU  - E. A. Potekhina
AU  - M. I. Tolovikov
TI  - Oscillating random walk and the Hadamard product of rational functions
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 96
EP  - 115
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_3_a7/
LA  - ru
ID  - DM_2013_25_3_a7
ER  - 
%0 Journal Article
%A E. A. Potekhina
%A M. I. Tolovikov
%T Oscillating random walk and the Hadamard product of rational functions
%J Diskretnaya Matematika
%D 2013
%P 96-115
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_3_a7/
%G ru
%F DM_2013_25_3_a7
E. A. Potekhina; M. I. Tolovikov. Oscillating random walk and the Hadamard product of rational functions. Diskretnaya Matematika, Tome 25 (2013) no. 3, pp. 96-115. http://geodesic.mathdoc.fr/item/DM_2013_25_3_a7/

[1] Stenli R., Perechislitelnaya kombinatorika, Per. s angl., Mir, Moskva, 1990 | MR

[2] Lando S. K., Lektsii o proizvodyaschikh funktsiyakh, MTsNMO, Moskva, 2007

[3] Stanley R. P., “Differentiably finite power series”, Europ. J. Comb., 1 (1980), 175–178 | DOI | MR

[4] Han Guo-Niu, “A General Algorithm for the MacMahon Omega Operator”, Ann. Comb., 7:4 (2003), 467–480 | DOI | MR | Zbl

[5] Tolovikov M. I., “Sluchainye bluzhdaniya i proizvedenie Adamara stepennykh ryadov”, Obozr. prikl. i promyshl. matem., 18:3 (2011), 505–506

[6] Kim J. H., Hadamard products, lattice paths, and skew tableaux, PhD thesis Brandeis Univ. Dep. Math., ProQuest, UMI Diss. Publ., 2012 | MR

[7] Kim J. H., “Hadamard Products and Tilings”, J. Integer Sequences, 12 (2009), Article 09.7.4, Cornell Univ. Library | MR

[8] Shapiro L., “A combinatorial proof of a Chebyshev polynomial identity”, Discrete Math., 34 (1981), 203–206 | DOI | MR | Zbl