Density of graphs in which each edge is contained in at least two maximal cliques
Diskretnaya Matematika, Tome 25 (2013) no. 3, pp. 7-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_3_a1,
     author = {I. A. Badekha and P. V. Roldugin},
     title = {Density of graphs in which each edge is contained in at least two maximal cliques},
     journal = {Diskretnaya Matematika},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_3_a1/}
}
TY  - JOUR
AU  - I. A. Badekha
AU  - P. V. Roldugin
TI  - Density of graphs in which each edge is contained in at least two maximal cliques
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 7
EP  - 21
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_3_a1/
LA  - ru
ID  - DM_2013_25_3_a1
ER  - 
%0 Journal Article
%A I. A. Badekha
%A P. V. Roldugin
%T Density of graphs in which each edge is contained in at least two maximal cliques
%J Diskretnaya Matematika
%D 2013
%P 7-21
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_3_a1/
%G ru
%F DM_2013_25_3_a1
I. A. Badekha; P. V. Roldugin. Density of graphs in which each edge is contained in at least two maximal cliques. Diskretnaya Matematika, Tome 25 (2013) no. 3, pp. 7-21. http://geodesic.mathdoc.fr/item/DM_2013_25_3_a1/

[1] Roldugin P. V., “Reduktsiya grafa pri poiske rebernogo pokrytiya minimalnym chislom klik”, Matematicheskie voprosy kriptografii, 3:3 (2012), 105–128

[2] Cavers M. S., Clique partitions and coverings of graphs, An essay presented to the University of Waterloo in fulfillment of the essay requirement for the degree of Masters of Mathematics, Waterloo, Ontario, Canada, December 20th, 2005

[3] Gramm J., Guo J., Huffner F., Niedermeier R., “Data Reduction, Exact, and Heuristic Algorithms for Clique Cover”, Proc. 8th ALENEX-06, SIAM, 2006, 86–94

[4] Kou L. T., Stockmeyer L. J., Wong C. K., “Cliques with Regard to Keyword Conflicts and Intersection Graphs”, Comm. ACM, 21:2, Feb. (1978), 135–139 | DOI | MR | Zbl

[5] Orlin J., “Contentment in graph theory: Covering graphs with cliques”, Indagat. Math., 39 (1977), 406–424 | DOI | MR