Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2013_25_3_a1, author = {I. A. Badekha and P. V. Roldugin}, title = {Density of graphs in which each edge is contained in at least two maximal cliques}, journal = {Diskretnaya Matematika}, pages = {7--21}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2013_25_3_a1/} }
TY - JOUR AU - I. A. Badekha AU - P. V. Roldugin TI - Density of graphs in which each edge is contained in at least two maximal cliques JO - Diskretnaya Matematika PY - 2013 SP - 7 EP - 21 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2013_25_3_a1/ LA - ru ID - DM_2013_25_3_a1 ER -
I. A. Badekha; P. V. Roldugin. Density of graphs in which each edge is contained in at least two maximal cliques. Diskretnaya Matematika, Tome 25 (2013) no. 3, pp. 7-21. http://geodesic.mathdoc.fr/item/DM_2013_25_3_a1/
[1] Roldugin P. V., “Reduktsiya grafa pri poiske rebernogo pokrytiya minimalnym chislom klik”, Matematicheskie voprosy kriptografii, 3:3 (2012), 105–128
[2] Cavers M. S., Clique partitions and coverings of graphs, An essay presented to the University of Waterloo in fulfillment of the essay requirement for the degree of Masters of Mathematics, Waterloo, Ontario, Canada, December 20th, 2005
[3] Gramm J., Guo J., Huffner F., Niedermeier R., “Data Reduction, Exact, and Heuristic Algorithms for Clique Cover”, Proc. 8th ALENEX-06, SIAM, 2006, 86–94
[4] Kou L. T., Stockmeyer L. J., Wong C. K., “Cliques with Regard to Keyword Conflicts and Intersection Graphs”, Comm. ACM, 21:2, Feb. (1978), 135–139 | DOI | MR | Zbl
[5] Orlin J., “Contentment in graph theory: Covering graphs with cliques”, Indagat. Math., 39 (1977), 406–424 | DOI | MR