Characteristic submodules of injective modules
Diskretnaya Matematika, Tome 25 (2013) no. 2, pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_2_a8,
     author = {A. A. Tuganbaev},
     title = {Characteristic submodules of injective modules},
     journal = {Diskretnaya Matematika},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_2_a8/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Characteristic submodules of injective modules
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 85
EP  - 90
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_2_a8/
LA  - ru
ID  - DM_2013_25_2_a8
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Characteristic submodules of injective modules
%J Diskretnaya Matematika
%D 2013
%P 85-90
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_2_a8/
%G ru
%F DM_2013_25_2_a8
A. A. Tuganbaev. Characteristic submodules of injective modules. Diskretnaya Matematika, Tome 25 (2013) no. 2, pp. 85-90. http://geodesic.mathdoc.fr/item/DM_2013_25_2_a8/

[1] Alahmadi A., Er N., Jain S. K., “Modules which are invariant under monomorphisms of their injective hulls”, J. Australian Math. Soc., 79:3 (2005), 349–360 | DOI | MR | Zbl

[2] Er N., “Rings whose modules are direct sums of extending modules”, Proc. Amer. Math. Soc., 137:7 (2009), 2265–2271 | DOI | MR | Zbl

[3] Er N., Singh S., Srivastava A. K., “Rings and modules which are stable under automorphisms of their injectve hulls”, J. Algebra, 379 (2013), 223–229 | DOI | MR | Zbl

[4] Goodearl K. R., Ring Theory: Nonsingular Rings and Modules, Marcel Dekker, New York, 1976 | MR | Zbl

[5] Goodearl K. R., Warfield R. B., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[6] Jain S. K., Singh S., “Quasi-injective and pseudo-injective modules”, Canadian Math. Bull., 18:3 (1975), 359–366 | DOI | MR | Zbl

[7] Johnson R. E., Wong F. T., “Quasi-injective modules and irreducible rings”, J. London Math. Soc., 36 (1961), 260–268 | DOI | MR | Zbl

[8] Lee T. K., Zhou Y., “Modules which are invariant under automorphisms of their injective hulls”, J. Algebra Appl., 6:2 (2013), 1250159 | DOI | MR

[9] Lenagan T. H., “Bounded hereditary Noetherian prime rings”, J. London Math. Soc., 6 (1973), 241–246 | DOI | MR | Zbl

[10] Singh S., Srivastava A. K., “Rings of invariant module type and automorphism-invariant modules”, Contemporary Mathematics, Volume in honor of T. Y. Lam, Amer. Math. Soc., 2013

[11] Teply M. L., “Pseudo-injective modules which are not quasiinjective”, Proc. Amer. Math. Soc., 49:2 (1975), 305–310 | DOI | MR | Zbl

[12] Tuganbaev A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht–Boston–London, 1998 | MR | Zbl

[13] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl