Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2013_25_2_a2, author = {A. L. Gavrilyuk and A. A. Makhnev}, title = {Distance-regular graph with the intersection array $\{45,30,7;1,2,27\}$ does not exist}, journal = {Diskretnaya Matematika}, pages = {13--30}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2013_25_2_a2/} }
TY - JOUR AU - A. L. Gavrilyuk AU - A. A. Makhnev TI - Distance-regular graph with the intersection array $\{45,30,7;1,2,27\}$ does not exist JO - Diskretnaya Matematika PY - 2013 SP - 13 EP - 30 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2013_25_2_a2/ LA - ru ID - DM_2013_25_2_a2 ER -
A. L. Gavrilyuk; A. A. Makhnev. Distance-regular graph with the intersection array $\{45,30,7;1,2,27\}$ does not exist. Diskretnaya Matematika, Tome 25 (2013) no. 2, pp. 13-30. http://geodesic.mathdoc.fr/item/DM_2013_25_2_a2/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer, Berlin, 1989 | MR | Zbl
[2] Godsil C. D., “Geometric distance-regular covers”, J. Math., 22:2 (1993), 31–38 | MR | Zbl
[3] Koolen J. H., Bang S., “On distance-regular graphs with smallest eigenvalue at least $-m$”, J. Combin. Theory, 100:6 (2010), 573–584 | DOI | MR | Zbl
[4] Blokhuis A., Brouwer A. E., “Determination of the distance-regular graphs without 3-claws”, Discrete Math., 163:1–3 (1997), 225–227 | DOI | MR | Zbl
[5] Bang S., Geometric distance-regular graphs without 4-claws, arXiv: 1101.0440 | MR
[6] Bang S., Koolen J. H., “On geometric distance-regular graphs”, European Journal of Combinatorics (to appear)
[7] Koolen J. H., Park J., “Shilla distance-regular graphs”, European J. Combin., 31:8 (2010), 2064–2073 | DOI | MR | Zbl