Automorphisms of submodules and their extensions
Diskretnaya Matematika, Tome 25 (2013) no. 1, pp. 144-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_1_a9,
     author = {A. A. Tuganbaev},
     title = {Automorphisms of submodules and their extensions},
     journal = {Diskretnaya Matematika},
     pages = {144--151},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_1_a9/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Automorphisms of submodules and their extensions
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 144
EP  - 151
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_1_a9/
LA  - ru
ID  - DM_2013_25_1_a9
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Automorphisms of submodules and their extensions
%J Diskretnaya Matematika
%D 2013
%P 144-151
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_1_a9/
%G ru
%F DM_2013_25_1_a9
A. A. Tuganbaev. Automorphisms of submodules and their extensions. Diskretnaya Matematika, Tome 25 (2013) no. 1, pp. 144-151. http://geodesic.mathdoc.fr/item/DM_2013_25_1_a9/

[1] Alahmadi A., Er N., Jain S. K., “Modules which are invariant under monomorphisms of their injective hulls”, J. Australian Math. Soc., 79:3 (2005), 2265–2271 | DOI | MR

[2] Eisenbud D., Griffith P., “The structure of serial rings”, Pacific J. Math., 36:1 (1971), 109–121 | DOI | MR | Zbl

[3] Er N., “Rings whose modules are direct sums of extending modules”, Proc. Amer. Math. Soc., 137:7 (2009), 2265–2271 | DOI | MR | Zbl

[4] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, Moskva, 1979 | MR

[5] Goodearl K. R., Warfield R. B., An introduction to noncommutative Noetherian rings, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[6] Jain S. K., Singh S., “Quasi-injective and pseudo-injective modules”, Canadian Math. Bull., 18:3 (1975), 359–366 | DOI | MR | Zbl

[7] Johnson R. E., Wong F. T., “Quasi-injective modules and irreducible rings”, J. London Math. Soc., 36 (1961), 260–268 | DOI | MR | Zbl

[8] Lee T.-K., Zhou Y., “Modules which are invariant under automorphisms of their injective hulls”, J. Algebra Appl., 12:2 (2013), 1250159 | DOI | Zbl

[9] Mohamed S. H., Müller B. J., Continuous and discrete modules, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[10] Singh S., “On pseudo-injective modules”, Riv. Mat. Univ. Parma, 9 (1969), 59–65 | MR

[11] Singh S., Jain S. K., “On pseudo-injective modules and selfpseudo-injective rings”, J. Math. Sci., 2 (1967), 23–31 | MR | Zbl

[12] Singh S., Srivastava A. K., Rings of invariant module type and automorphism-invariant modules, arXiv: 1207.5370[math.RA]

[13] Tachikawa H., “QF-3 rings and categories of projective modules”, J. Algebra, 28 (1974), 408–413 | DOI | MR | Zbl

[14] Teply M. L., “Pseudo-injective modules which are not quasiinjective”, Proc. Amer. Math. Soc., 49 (1975), 305–310 | DOI | MR | Zbl

[15] Wisbauer R., Foundations of module and ring theory, Gordon Breach, Philadelphia, 1991 | MR | Zbl