On the solvability of the equational theory of commutative medial $n$-ary groupoids
Diskretnaya Matematika, Tome 25 (2013) no. 1, pp. 121-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2013_25_1_a7,
     author = {S. S. Davidov},
     title = {On the solvability of the equational theory of commutative medial $n$-ary groupoids},
     journal = {Diskretnaya Matematika},
     pages = {121--136},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2013_25_1_a7/}
}
TY  - JOUR
AU  - S. S. Davidov
TI  - On the solvability of the equational theory of commutative medial $n$-ary groupoids
JO  - Diskretnaya Matematika
PY  - 2013
SP  - 121
EP  - 136
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2013_25_1_a7/
LA  - ru
ID  - DM_2013_25_1_a7
ER  - 
%0 Journal Article
%A S. S. Davidov
%T On the solvability of the equational theory of commutative medial $n$-ary groupoids
%J Diskretnaya Matematika
%D 2013
%P 121-136
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2013_25_1_a7/
%G ru
%F DM_2013_25_1_a7
S. S. Davidov. On the solvability of the equational theory of commutative medial $n$-ary groupoids. Diskretnaya Matematika, Tome 25 (2013) no. 1, pp. 121-136. http://geodesic.mathdoc.fr/item/DM_2013_25_1_a7/

[1] Dörnte W., “Untersuchungen über einen verallgemeinerten Gruppenbegriff”, Math. Z., 29 (1928), 1–19 | DOI | MR

[2] Post E. L., “Polyadic groups”, Trans. Amer. Math. Soc., 48 (1940), 208–350 | DOI | MR | Zbl

[3] Chunikhin S. A., “K teorii neassotsiativnykh $n$-grupp s postulatom K”, Doklady AN SSSR, 48:1 (1945), 7–10

[4] Maltsev A. I., Iterativnye algebry Posta, Izd-vo NGU, Novosibirsk, 1976 | MR

[5] Glushkov V. M., Tseitlin G. E., Yuschenko E. L., Algebra, yazyki, programmirovanie, Naukova dumka, Kiev, 1974 | MR | Zbl

[6] Belousov V. D., $n$-arnye kvazigruppy, Shtiintsa, Kishinev, 1972 | MR

[7] Rusakov S. A., Algebraicheskie $n$-arnye sistemy. Silovskaya teoriya $n$-ykh grupp, Navuka i tekhnika, Minsk, 1992

[8] Ušan J., $n$-groups in the light of the neutral operations, Math. Morav., Special Vol.: Monograph, 2003, 162 pp. | MR

[9] Movsisyan Yu. M., Vvedenie v teoriyu algebr so sverkhtozhdestvami, Izd-vo EGU, Erevan, 1986 | MR | Zbl

[10] Marini A., Shcherbacov V., “On autotopies and automorphisms of $n$-ary linear quasigroups”, Algebra Discrete Math., 2 (2004), 59–83 | MR | Zbl

[11] Dudek V. A., Trokhimenko V. S., Algebry Mengera mnogomestnykh funktsii, Universitatea de Stat din Moldova, Chişinău, 2006 | MR | Zbl

[12] Shcherbacov V., “On structure of finite $n$-ary medial quasigroups and automorphism groups of these quasigroups”, Quasigroups Relat. Syst., 13 (2005), 125–156 | MR | Zbl

[13] Glukhov M. M., “O mnogoobraziyakh $(i,j)$-privodimykh $n$-kvazigrupp”, Matem. issled., 39 (1976), 67–72 | Zbl

[14] Ježek J., Kepka T., “Equational theories of medial groupoids”, Algebra Univers., 17 (1983), 174–190 | DOI | MR

[15] Ježek J., Kepka T., “Medial groupoids”, Rozpr. Česk. Akad. Věd, Řada Mat. Přír. Věd, 93:2 (1983), 1–93 | MR

[16] Kurosh A. G., Obschaya algebra, Nauka, Moskva, 1974 | MR

[17] Romanowska A. B., Smith J. D. H., Modes, World Scientific, Singapore, 2002 | MR | Zbl

[18] Movsisyan Yu. M., “Sverkhtozhdestva v algebrakh i mnogoobraziyakh”, Uspekhi matem. nauk, 53:1 (1998), 61–114 | DOI | MR | Zbl

[19] Smith J. D. H., “Entropy, character theory and centrality of finite quasigroups”, Math. Proc. Cambridge Philos. Soc., 108 (1990), 435–443 | DOI | MR | Zbl