Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2013_25_1_a5, author = {G. I. Ivchenko and V. A. Mironova}, title = {Some problems of spectral analysis of random {Boolean} functions with constraints}, journal = {Diskretnaya Matematika}, pages = {90--110}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2013_25_1_a5/} }
TY - JOUR AU - G. I. Ivchenko AU - V. A. Mironova TI - Some problems of spectral analysis of random Boolean functions with constraints JO - Diskretnaya Matematika PY - 2013 SP - 90 EP - 110 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2013_25_1_a5/ LA - ru ID - DM_2013_25_1_a5 ER -
G. I. Ivchenko; V. A. Mironova. Some problems of spectral analysis of random Boolean functions with constraints. Diskretnaya Matematika, Tome 25 (2013) no. 1, pp. 90-110. http://geodesic.mathdoc.fr/item/DM_2013_25_1_a5/
[1] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, Moskva, 2004
[2] Logachev O. A., Salnikov A. L., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, Moskva, 2004
[3] Cusick T. W., Stănică P., Cryptographic Boolean functions and applications, Elsevier, Amsterdam, 2009 | MR | Zbl
[4] Ivchenko G. I., Medvedev Yu. I., “Spektr sluchainoi bulevoi funktsii i ego proizvodyaschaya funktsiya”, Matematicheskie voprosy kriptografii, 2:2 (2011), 41–53
[5] Ivchenko G. I., Medvedev Yu. I., “Stokhasticheskie bulevy funktsii i ikh spektry”, Matematicheskie voprosy kriptografii, 3:3 (2012), 21–34
[6] Segë G., Ortogonalnye mnogochleny, Fizmatlit, Moskva, 1962
[7] Ivchenko G. I., Ivanov V. A., Medvedev Yu. I., “Diskretnye zadachi v teorii veroyatnostei”, Itogi nauki i tekhniki. Ser. Teoriya veroyatn., matem. statist., teor. kibern., 22, 1984, 3–60 | MR | Zbl
[8] Canteaut A., Videau M., “Symmetric Boolean functions”, IEEE Trans. Inform. Theory, 51 (2005), 2791–2811 | DOI | MR
[9] Peng J., Wu Q., Kan H., “On symmetric Boolean functions with high algebraic immunity on even number of variables”, IEEE Trans. Inform. Theory, 57 (2011), 7205–7220 | DOI | MR