Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2012_24_4_a4, author = {V. A. Buevich and M. A. Podkolzina}, title = {On algorithmic solvability of the $A$-completeness problem for systems of boundedly determinate functions containing all one-place boundedly determinate $S$-functions}, journal = {Diskretnaya Matematika}, pages = {56--69}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2012_24_4_a4/} }
TY - JOUR AU - V. A. Buevich AU - M. A. Podkolzina TI - On algorithmic solvability of the $A$-completeness problem for systems of boundedly determinate functions containing all one-place boundedly determinate $S$-functions JO - Diskretnaya Matematika PY - 2012 SP - 56 EP - 69 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2012_24_4_a4/ LA - ru ID - DM_2012_24_4_a4 ER -
%0 Journal Article %A V. A. Buevich %A M. A. Podkolzina %T On algorithmic solvability of the $A$-completeness problem for systems of boundedly determinate functions containing all one-place boundedly determinate $S$-functions %J Diskretnaya Matematika %D 2012 %P 56-69 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2012_24_4_a4/ %G ru %F DM_2012_24_4_a4
V. A. Buevich; M. A. Podkolzina. On algorithmic solvability of the $A$-completeness problem for systems of boundedly determinate functions containing all one-place boundedly determinate $S$-functions. Diskretnaya Matematika, Tome 24 (2012) no. 4, pp. 56-69. http://geodesic.mathdoc.fr/item/DM_2012_24_4_a4/
[1] Buevich V. A., “Ob algoritmicheskoi nerazreshimosti raspoznavaniya $A$-polnoty dlya ogranichenno-determinirovannykh funktsii”, Matematicheskie zametki, 11:6 (1972), 687–697 | MR | Zbl
[2] Buevich V. A., “O $\tau$-polnote v klassakh avtomatnykh otobrazhenii”, Doklady AN SSSR, 252:5 (1980), 221–224 | MR
[3] Buevich V. A., “Kriterii $A$-polnoty dlya avtomatov v terminakh $A$-predpolnykh klassov”, Discrete Mathematics, Banach Cent. Publ., 7, Polish Acad. Sci., Inst. Math., PWN, Warsaw, 1982, 53–63 | MR
[4] Buevich V. A., Podkolzina M. A., “Kriterii polnoty $S$-mnozhestv determinirovannykh funktsii”, Matematicheskie voprosy kibernetiki, 16, 2007, 191–238 | Zbl
[5] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, Moskva, 1985 | MR | Zbl
[6] Podkolzina M. A., “O polnote i $A$-polnote $S$-mnozhestv determinirovannykh funktsii, soderzhaschikh vse odnomestnye determinirovannye $S$-funktsii”, Diskretnaya matematika, 21:2 (2009), 75–87 | DOI | MR
[7] Buevich V. A., Klindukhova T. E., “O suschestvovanii algoritma dlya raspoznavaniya $A$-polnoty sistem, soderzhaschikh vse odnomestnye ogranichenno-determinirovannye funktsii”, Matematicheskie voprosy kibernetiki, 8, 1999, 289–297 | MR | Zbl
[8] Buevich V. A., Usloviya $A$-polnoty dlya konechnykh avtomatov, v. 1, Izd-vo Moskovskogo un-ta, Moskva, 1986; т. 2, 1987