Definition of positively closed classes by endomorphism semigroups
Diskretnaya Matematika, Tome 24 (2012) no. 4, pp. 19-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_4_a1,
     author = {S. S. Marchenkov},
     title = {Definition of positively closed classes by endomorphism semigroups},
     journal = {Diskretnaya Matematika},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_4_a1/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Definition of positively closed classes by endomorphism semigroups
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 19
EP  - 26
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_4_a1/
LA  - ru
ID  - DM_2012_24_4_a1
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Definition of positively closed classes by endomorphism semigroups
%J Diskretnaya Matematika
%D 2012
%P 19-26
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_4_a1/
%G ru
%F DM_2012_24_4_a1
S. S. Marchenkov. Definition of positively closed classes by endomorphism semigroups. Diskretnaya Matematika, Tome 24 (2012) no. 4, pp. 19-26. http://geodesic.mathdoc.fr/item/DM_2012_24_4_a1/

[1] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta. I”, Kibernetika, 1969, no. 3, 1–10 | Zbl

[2] Danilchenko A. F., “O parametricheskoi vyrazimosti funktsii trekhznachnoi logiki”, Algebra i logika, 16:4 (1977), 397–416 | MR

[3] Kuznetsov A. V., “O sredstvakh dlya obnaruzheniya nevyvodimosti i nevyrazimosti”, Logicheskii vyvod, Nauka, Moskva, 1979, 5–33

[4] Marchenkov S. S., “O vyrazimosti funktsii mnogoznachnoi logiki v nekotorykh logiko-funktsionalnykh yazykakh”, Diskretnaya matematika, 11:4 (1999), 110–126 | DOI | MR | Zbl

[5] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, Moskva, 2000 | MR | Zbl

[6] Marchenkov S. S., “Kriterii pozitivnoi polnoty v trekhznachnoi logike”, Diskretnyi analiz i issledovanie operatsii. Ser. 1, 13:3 (2006), 27–39 | MR | Zbl

[7] Marchenkov S. S., “Diskriminatornye pozitivno zamknutye klassy trekhznachnoi logiki”, Diskretnyi analiz i issledovanie operatsii. Ser. 1, 14:3 (2007), 53–66 | MR | Zbl

[8] Marchenkov S. S., “O zamknutykh klassakh funktsii $k$-znachnoi logiki, opredelyaemykh odnim endomorfizmom”, Diskretnyi analiz i issledovanie operatsii, 16:6 (2009), 52–67 | MR | Zbl

[9] Marchenkov S. S., “Pozitivno zamknutye klassy trekhznachnoi logiki, porozhdaemye odnomestnymi funktsiyami”, Diskretnaya matematika, 21:3 (2009), 37–44 | DOI | MR | Zbl

[10] Yanov Yu. I., Muchnik A. A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh bazisa”, Doklady AN SSSR, 127:1 (1959), 44–46 | Zbl

[11] Barris S., Willard R., “Finitely many primitive positive clones”, Proc. Amer. Math. Soc., 101 (1987), 427–430 | DOI | MR