On approximation of maximally nonlinear Boolean functions by almost linear functions
Diskretnaya Matematika, Tome 24 (2012) no. 3, pp. 73-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_3_a7,
     author = {V. B. Alekseev and R. R. Omarov},
     title = {On approximation of maximally nonlinear {Boolean} functions by almost linear functions},
     journal = {Diskretnaya Matematika},
     pages = {73--81},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_3_a7/}
}
TY  - JOUR
AU  - V. B. Alekseev
AU  - R. R. Omarov
TI  - On approximation of maximally nonlinear Boolean functions by almost linear functions
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 73
EP  - 81
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_3_a7/
LA  - ru
ID  - DM_2012_24_3_a7
ER  - 
%0 Journal Article
%A V. B. Alekseev
%A R. R. Omarov
%T On approximation of maximally nonlinear Boolean functions by almost linear functions
%J Diskretnaya Matematika
%D 2012
%P 73-81
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_3_a7/
%G ru
%F DM_2012_24_3_a7
V. B. Alekseev; R. R. Omarov. On approximation of maximally nonlinear Boolean functions by almost linear functions. Diskretnaya Matematika, Tome 24 (2012) no. 3, pp. 73-81. http://geodesic.mathdoc.fr/item/DM_2012_24_3_a7/

[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, Moskva, 2004

[2] Alekseev V. B., Omarov R. R., “Issledovanie odnogo parametra bulevykh funktsii, blizkogo k nelineinosti”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta, 15(70):12/1 (2009), 81–87

[3] Alekseev V. B., Omarov R. R., “O rasstoyaniyakh ot maksimalno-nelineinykh bulevykh funktsii do pochti affinnykh funktsii”, Materialy XVI Mezhdunarodnoi konferentsii “Problemy teoreticheskoi kibernetiki”, Nizhegorodskii universitet, Nizhnii Novgorod, 2011, 24–28