Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2012_24_3_a7, author = {V. B. Alekseev and R. R. Omarov}, title = {On approximation of maximally nonlinear {Boolean} functions by almost linear functions}, journal = {Diskretnaya Matematika}, pages = {73--81}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2012_24_3_a7/} }
TY - JOUR AU - V. B. Alekseev AU - R. R. Omarov TI - On approximation of maximally nonlinear Boolean functions by almost linear functions JO - Diskretnaya Matematika PY - 2012 SP - 73 EP - 81 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2012_24_3_a7/ LA - ru ID - DM_2012_24_3_a7 ER -
V. B. Alekseev; R. R. Omarov. On approximation of maximally nonlinear Boolean functions by almost linear functions. Diskretnaya Matematika, Tome 24 (2012) no. 3, pp. 73-81. http://geodesic.mathdoc.fr/item/DM_2012_24_3_a7/
[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, Moskva, 2004
[2] Alekseev V. B., Omarov R. R., “Issledovanie odnogo parametra bulevykh funktsii, blizkogo k nelineinosti”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta, 15(70):12/1 (2009), 81–87
[3] Alekseev V. B., Omarov R. R., “O rasstoyaniyakh ot maksimalno-nelineinykh bulevykh funktsii do pochti affinnykh funktsii”, Materialy XVI Mezhdunarodnoi konferentsii “Problemy teoreticheskoi kibernetiki”, Nizhegorodskii universitet, Nizhnii Novgorod, 2011, 24–28