Counting $k$-sumsets in groups of prime order
Diskretnaya Matematika, Tome 24 (2012) no. 3, pp. 25-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_3_a2,
     author = {V. G. Sargsyan},
     title = {Counting $k$-sumsets in groups of prime order},
     journal = {Diskretnaya Matematika},
     pages = {25--38},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_3_a2/}
}
TY  - JOUR
AU  - V. G. Sargsyan
TI  - Counting $k$-sumsets in groups of prime order
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 25
EP  - 38
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_3_a2/
LA  - ru
ID  - DM_2012_24_3_a2
ER  - 
%0 Journal Article
%A V. G. Sargsyan
%T Counting $k$-sumsets in groups of prime order
%J Diskretnaya Matematika
%D 2012
%P 25-38
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_3_a2/
%G ru
%F DM_2012_24_3_a2
V. G. Sargsyan. Counting $k$-sumsets in groups of prime order. Diskretnaya Matematika, Tome 24 (2012) no. 3, pp. 25-38. http://geodesic.mathdoc.fr/item/DM_2012_24_3_a2/

[1] Green B., Ruzsa I., “Counting sumsets and sum-free sets modulo a prime”, Studia Sci. Math. Hungarica, 41 (2004), 285–293 | MR | Zbl

[2] Nathanson M. B., Additive number theory: Inverse problems and the geometry of sumsets, Springer, Berlin, 1996 | MR

[3] Pollard J. M., “A generalization of the theorem of Cauchy and Davenport”, J. London Math. Soc., 8 (1974), 460–462 | DOI | MR | Zbl

[4] Sapozhenko A. A., Problema Dedekinda i metod granichnykh funktsionalov, Fizmatlit, Moskva, 2009