Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2012_24_2_a10, author = {V. A. Topchii}, title = {The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$}, journal = {Diskretnaya Matematika}, pages = {123--148}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/} }
TY - JOUR AU - V. A. Topchii TI - The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$ JO - Diskretnaya Matematika PY - 2012 SP - 123 EP - 148 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/ LA - ru ID - DM_2012_24_2_a10 ER -
%0 Journal Article %A V. A. Topchii %T The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$ %J Diskretnaya Matematika %D 2012 %P 123-148 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/ %G ru %F DM_2012_24_2_a10
V. A. Topchii. The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$. Diskretnaya Matematika, Tome 24 (2012) no. 2, pp. 123-148. http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/
[1] Erickson K. B., “Strong renewal theorems with infinite mean”, Trans. Amer. Math. Soc., 151 (1970), 263–291 | DOI | MR | Zbl
[2] Erickson K. B., “A renewal theorem for distribution on $\mathbf R^1$ without expectation”, Bull. Amer. Math. Soc., 77 (1971), 406–410 | DOI | MR | Zbl
[3] Topchii V., “Renewal measure density for distributions with regularly varying tails of order $\alpha\in(0,1/2]$”, Lect. Notes Statist., 197, 2010, 109–118 | DOI | MR
[4] Topchii V. A., “Proizvodnaya plotnosti vosstanovleniya s beskonechnym momentom”, Sibirskie elektronnye matem. izvestiya, 7 (2010), 340–349 | MR
[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, Moskva, 1984 | Zbl
[6] Topchii V. A., Vatutin V. A., “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and Computer Science, v. III, Algoritms, Trees, Combinatorics and Probabilities, eds. Drmota M. et al., Birkhäuser, Basel, 2004, 387–395 | DOI | MR | Zbl
[7] Vatutin V. A., Topchii V. A., “Kataliticheskie vetvyaschiesya sluchainye bluzhdaniya na $\mathbb Z^d$ s vetvleniem v nule”, Matematicheskie trudy, 14:2 (2011), 28–72 | MR
[8] Borovkov A. A., Teoriya veroyatnostei, URSS, Moskva, 2009
[9] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatgiz, Moskva, 1959