The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$
Diskretnaya Matematika, Tome 24 (2012) no. 2, pp. 123-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_2_a10,
     author = {V. A. Topchii},
     title = {The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$},
     journal = {Diskretnaya Matematika},
     pages = {123--148},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/}
}
TY  - JOUR
AU  - V. A. Topchii
TI  - The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 123
EP  - 148
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/
LA  - ru
ID  - DM_2012_24_2_a10
ER  - 
%0 Journal Article
%A V. A. Topchii
%T The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$
%J Diskretnaya Matematika
%D 2012
%P 123-148
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/
%G ru
%F DM_2012_24_2_a10
V. A. Topchii. The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$. Diskretnaya Matematika, Tome 24 (2012) no. 2, pp. 123-148. http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/

[1] Erickson K. B., “Strong renewal theorems with infinite mean”, Trans. Amer. Math. Soc., 151 (1970), 263–291 | DOI | MR | Zbl

[2] Erickson K. B., “A renewal theorem for distribution on $\mathbf R^1$ without expectation”, Bull. Amer. Math. Soc., 77 (1971), 406–410 | DOI | MR | Zbl

[3] Topchii V., “Renewal measure density for distributions with regularly varying tails of order $\alpha\in(0,1/2]$”, Lect. Notes Statist., 197, 2010, 109–118 | DOI | MR

[4] Topchii V. A., “Proizvodnaya plotnosti vosstanovleniya s beskonechnym momentom”, Sibirskie elektronnye matem. izvestiya, 7 (2010), 340–349 | MR

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, Moskva, 1984 | Zbl

[6] Topchii V. A., Vatutin V. A., “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and Computer Science, v. III, Algoritms, Trees, Combinatorics and Probabilities, eds. Drmota M. et al., Birkhäuser, Basel, 2004, 387–395 | DOI | MR | Zbl

[7] Vatutin V. A., Topchii V. A., “Kataliticheskie vetvyaschiesya sluchainye bluzhdaniya na $\mathbb Z^d$ s vetvleniem v nule”, Matematicheskie trudy, 14:2 (2011), 28–72 | MR

[8] Borovkov A. A., Teoriya veroyatnostei, URSS, Moskva, 2009

[9] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatgiz, Moskva, 1959