The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$
Diskretnaya Matematika, Tome 24 (2012) no. 2, pp. 123-148

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_2_a10,
     author = {V. A. Topchii},
     title = {The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$},
     journal = {Diskretnaya Matematika},
     pages = {123--148},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/}
}
TY  - JOUR
AU  - V. A. Topchii
TI  - The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 123
EP  - 148
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/
LA  - ru
ID  - DM_2012_24_2_a10
ER  - 
%0 Journal Article
%A V. A. Topchii
%T The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$
%J Diskretnaya Matematika
%D 2012
%P 123-148
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/
%G ru
%F DM_2012_24_2_a10
V. A. Topchii. The asymptotic behaviour of derivatives of the renewal function for distributions with infinite first moment and regularly varying tails of index $\beta\in(1/2,1]$. Diskretnaya Matematika, Tome 24 (2012) no. 2, pp. 123-148. http://geodesic.mathdoc.fr/item/DM_2012_24_2_a10/