Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2012_24_1_a7, author = {Z. I. Bezhaeva and V. I. Oseledets}, title = {Calculation of the entropy for a~hidden {Markov} chain}, journal = {Diskretnaya Matematika}, pages = {108--122}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2012_24_1_a7/} }
Z. I. Bezhaeva; V. I. Oseledets. Calculation of the entropy for a~hidden Markov chain. Diskretnaya Matematika, Tome 24 (2012) no. 1, pp. 108-122. http://geodesic.mathdoc.fr/item/DM_2012_24_1_a7/
[1] Erdős P., “On a family of symmetric Bernoulli convolutions”, Amer. J. Math., 61 (1939), 974–975 | DOI | MR
[2] Sidorov N., Vershik A., “Ergodic properties of the Erdős measures, the entropy of the goldenshift, and related problems”, Monatsh. Math., 126 (1998), 215–261 | DOI | MR | Zbl
[3] Lalley S. P., “Random series in powers of algebraic integers: Hausdorff dimension of the limit distribution”, J. London Math. Soc., 57 (1998), 628–654 | DOI | MR
[4] Bezhaeva Z. I., Oseledets V. I., “Zadacha Erdësha–Vershika dlya zolotogo secheniya”, Funktsionalnyi analiz i ego prilozheniya, 44:2 (2010), 3–13 | MR | Zbl
[5] Grabner P. J., Kirschenhofer P., Tichy R. F., “Combinatorial and arithmetical properties of linear numeration systems”, Combinatorica, 22 (2002), 245–267 | DOI | MR | Zbl
[6] Feng De-Jun, “The limited Rademacher function and Bernoulli convolutions associated with Pisot numbers”, Adv. Math., 195 (2005), 24–101 | DOI | MR | Zbl
[7] Alexander I. C., Zagier D., “The entropy of a certain infinitely convolved Bernoulli measure”, J. London Math. Soc., 44 (1991), 121–134 | DOI | MR | Zbl
[8] Bezhaeva Z. I., Oseledets V. I., “Mery Erdësha, soficheskie mery i markovskie tsepi”, Zapiski nauchnykh seminarov POMI, 326, 2005, 28–47 | MR | Zbl