Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2012_24_1_a10, author = {A. N. Chuprunov and I. Fazekas}, title = {An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a~given number of particles}, journal = {Diskretnaya Matematika}, pages = {140--158}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2012_24_1_a10/} }
TY - JOUR AU - A. N. Chuprunov AU - I. Fazekas TI - An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a~given number of particles JO - Diskretnaya Matematika PY - 2012 SP - 140 EP - 158 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2012_24_1_a10/ LA - ru ID - DM_2012_24_1_a10 ER -
%0 Journal Article %A A. N. Chuprunov %A I. Fazekas %T An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a~given number of particles %J Diskretnaya Matematika %D 2012 %P 140-158 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2012_24_1_a10/ %G ru %F DM_2012_24_1_a10
A. N. Chuprunov; I. Fazekas. An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a~given number of particles. Diskretnaya Matematika, Tome 24 (2012) no. 1, pp. 140-158. http://geodesic.mathdoc.fr/item/DM_2012_24_1_a10/
[1] Chuprunov A. N., Fazekas I., “Inequalities and strong laws of large numbers for random allocations”, Acta Math. Hungar., 109 (2005), 163–182 | DOI | MR | Zbl
[2] Chuprunov A. N., Fazekas I., “An inequality for moments and its applications to the generalized allocation scheme”, Publ. Math. Debrecen, 76 (2010), 271–286 | MR | Zbl
[3] Chuprunov A. N., Fazekas I., “An exponential inequality and strong limit theorems for conditional expectations”, Period. Math. Hungar., 61 (2010), 103–120 | DOI | MR | Zbl
[4] Erdős P., Rényi A., “On the evolution of random graphs”, Publ. Math. Inst. Hung. Acad. Sci., 5 (1960), 17–61 | MR | Zbl
[5] Gnedenko B. V., Kolmogorov A. N., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, Leningrad–Moskva, 1949 | MR
[6] Kolchin A. V., “Predelnye teoremy dlya obobschennoi skhemy razmescheniya”, Diskretnaya matematika, 15:4 (2003), 148–157 | MR | Zbl
[7] Kolchin A. V., Kolchin V. F., “O perekhode raspredelenii summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin s odnoi reshetki na druguyu v obobschennoi skheme razmescheniya”, Diskretnaya matematika, 18:4 (2006), 113–127 | MR | Zbl
[8] Kolchin A. V., Kolchin V. F., “Perekhod s odnoi reshetki na druguyu raspredelenii summ sluchainykh velichin, vstrechayuschikhsya v obobschennoi skheme razmescheniya”, Diskretnaya matematika, 19:3 (2007), 15–21 | MR | Zbl
[9] Kolchin V. F., “Odin klass predelnykh teorem dlya uslovnykh raspredelenii”, Litovskii matem. sb., 8:1 (1968), 53–63 | MR | Zbl
[10] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2004
[11] Pavlov Yu. L., Sluchainye lesa, Karelskii NTs RAN, Petrozavodsk, 1996
[12] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 10:2 (1965), 310–322 | MR | Zbl
[13] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, Moskva, 1972 | MR
[14] Rozovskii L. V., “Veroyatnosti bolshikh uklonenii dlya nekotorykh klassov raspredelenii, udovletvoryayuschikh usloviyu Kramera”, Zapiski nauchnykh seminarov POMI, 298, 2003, 161–185 | MR | Zbl