An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a~given number of particles
Diskretnaya Matematika, Tome 24 (2012) no. 1, pp. 140-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2012_24_1_a10,
     author = {A. N. Chuprunov and I. Fazekas},
     title = {An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a~given number of particles},
     journal = {Diskretnaya Matematika},
     pages = {140--158},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2012_24_1_a10/}
}
TY  - JOUR
AU  - A. N. Chuprunov
AU  - I. Fazekas
TI  - An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a~given number of particles
JO  - Diskretnaya Matematika
PY  - 2012
SP  - 140
EP  - 158
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2012_24_1_a10/
LA  - ru
ID  - DM_2012_24_1_a10
ER  - 
%0 Journal Article
%A A. N. Chuprunov
%A I. Fazekas
%T An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a~given number of particles
%J Diskretnaya Matematika
%D 2012
%P 140-158
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2012_24_1_a10/
%G ru
%F DM_2012_24_1_a10
A. N. Chuprunov; I. Fazekas. An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a~given number of particles. Diskretnaya Matematika, Tome 24 (2012) no. 1, pp. 140-158. http://geodesic.mathdoc.fr/item/DM_2012_24_1_a10/

[1] Chuprunov A. N., Fazekas I., “Inequalities and strong laws of large numbers for random allocations”, Acta Math. Hungar., 109 (2005), 163–182 | DOI | MR | Zbl

[2] Chuprunov A. N., Fazekas I., “An inequality for moments and its applications to the generalized allocation scheme”, Publ. Math. Debrecen, 76 (2010), 271–286 | MR | Zbl

[3] Chuprunov A. N., Fazekas I., “An exponential inequality and strong limit theorems for conditional expectations”, Period. Math. Hungar., 61 (2010), 103–120 | DOI | MR | Zbl

[4] Erdős P., Rényi A., “On the evolution of random graphs”, Publ. Math. Inst. Hung. Acad. Sci., 5 (1960), 17–61 | MR | Zbl

[5] Gnedenko B. V., Kolmogorov A. N., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, Leningrad–Moskva, 1949 | MR

[6] Kolchin A. V., “Predelnye teoremy dlya obobschennoi skhemy razmescheniya”, Diskretnaya matematika, 15:4 (2003), 148–157 | MR | Zbl

[7] Kolchin A. V., Kolchin V. F., “O perekhode raspredelenii summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin s odnoi reshetki na druguyu v obobschennoi skheme razmescheniya”, Diskretnaya matematika, 18:4 (2006), 113–127 | MR | Zbl

[8] Kolchin A. V., Kolchin V. F., “Perekhod s odnoi reshetki na druguyu raspredelenii summ sluchainykh velichin, vstrechayuschikhsya v obobschennoi skheme razmescheniya”, Diskretnaya matematika, 19:3 (2007), 15–21 | MR | Zbl

[9] Kolchin V. F., “Odin klass predelnykh teorem dlya uslovnykh raspredelenii”, Litovskii matem. sb., 8:1 (1968), 53–63 | MR | Zbl

[10] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2004

[11] Pavlov Yu. L., Sluchainye lesa, Karelskii NTs RAN, Petrozavodsk, 1996

[12] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 10:2 (1965), 310–322 | MR | Zbl

[13] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, Moskva, 1972 | MR

[14] Rozovskii L. V., “Veroyatnosti bolshikh uklonenii dlya nekotorykh klassov raspredelenii, udovletvoryayuschikh usloviyu Kramera”, Zapiski nauchnykh seminarov POMI, 298, 2003, 161–185 | MR | Zbl