On construction of an explicit basis for admissible inference rules of modal logics extending~$S4.1$
Diskretnaya Matematika, Tome 23 (2011) no. 4, pp. 48-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2011_23_4_a3,
     author = {V. V. Rimatskii},
     title = {On construction of an explicit basis for admissible inference rules of modal logics extending~$S4.1$},
     journal = {Diskretnaya Matematika},
     pages = {48--65},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_4_a3/}
}
TY  - JOUR
AU  - V. V. Rimatskii
TI  - On construction of an explicit basis for admissible inference rules of modal logics extending~$S4.1$
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 48
EP  - 65
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_4_a3/
LA  - ru
ID  - DM_2011_23_4_a3
ER  - 
%0 Journal Article
%A V. V. Rimatskii
%T On construction of an explicit basis for admissible inference rules of modal logics extending~$S4.1$
%J Diskretnaya Matematika
%D 2011
%P 48-65
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_4_a3/
%G ru
%F DM_2011_23_4_a3
V. V. Rimatskii. On construction of an explicit basis for admissible inference rules of modal logics extending~$S4.1$. Diskretnaya Matematika, Tome 23 (2011) no. 4, pp. 48-65. http://geodesic.mathdoc.fr/item/DM_2011_23_4_a3/

[1] Rybakov V. V., Admissibility of logical inference rules, Elsevier, Amsterdam, 1997 | MR | Zbl

[2] Harrop R., “Concerning formulas of the types $A\to B\vee C$, $A\to\exists xB(x)$”, J. Symbolic Logic, 25 (1960), 27–32 | DOI | MR | Zbl

[3] Mints G. E., “Vyvodimost dopustimykh pravil”, Zap. nauchn. sem. LOMI, 32, 1973, 85–89 | MR | Zbl

[4] Port J., “The deducibilities of S5”, J. Phylosophical Logic, 10 (1981), 409–422 | DOI | MR | Zbl

[5] Lorenzen P., Einführung in die operative Logik und Mathematik, Springer, Heidelberg, 1969 | MR | Zbl

[6] Friedman H., “One hundred and two problems in mathematical logic”, J. Symbolic Logic, 40 (1975), 113–130 | DOI | MR

[7] Rybakov V. V., “Kriterii dopustimosti pravil vyvoda v modalnoi sisteme $S4$ i intuitsionistskoi logiki $H$”, Algebra i logika, 23:5 (1984), 369–384 | MR | Zbl

[8] Ghilardi S., “Unification in intuitionistic logic”, J. Symbolic Logic, 64 (1999), 859–880 | DOI | MR | Zbl

[9] Tsitkin A. I., “O dopustimykh pravilakh intuitsionistskoi logiki vyskazyvanii”, Matem. sb., 102(144):2 (1977), 314–323 | MR | Zbl

[10] Rybakov V. V., “Bazis dlya dopustimykh pravil logiki $S4$ i intuitsionistskoi logiki $H$”, Algebra i logika, 24:1 (1985), 55–68 | MR | Zbl

[11] Rimatskii V. V., “Bazisy dopustimykh pravil vyvoda tablichnykh modalnykh logik glubiny 2”, Algebra i logika, 35:6 (1996), 612–623 | MR

[12] Rimatskii V. V., “O konechnoi baziruemosti po dopustimosti modalnykh logik shiriny 2”, Algebra i logika, 38:4 (1999), 436–455 | MR

[13] Rybakov V., Terziler M., Remazki V., “A basis in semi-reduced form for the admissible rules of the intuitionistic logic IPC”, Math. Logic Q., 46 (2000), 207–218 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[14] Iemhoff R., “On the admissible rules of intuitionistic propositional logic”, J. Symbolic Logic, 66 (2001), 281–294 | DOI | MR | Zbl

[15] Iemhoff R., “A(nother) characterization of intuitionistic propositional logic”, Ann. Pure Appl. Logic, 113 (2001), 161–173 | DOI | MR

[16] Rybakov V. V., “Construction of an explicit basis for rules admissible in modal system S4”, Math. Logic Q., 47 (2001), 441–451 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[17] Wolter F., Zakharyaschev M., “Undecidability of the unification and admissibility problems for modal and description logics”, ACM TOCL, 9 (2008), 1–20 | DOI | MR

[18] Golovanov M. I., Yurasova E. M., Kriterii dopustimosti pravil vyvoda logiki s operatorom “zavtra”, Dep. VINITI, No 1654–B2004, Krasnoyarskii gos. un-t, Krasnoyarsk, 2004

[19] Rybakov V. V., “Logical consecutions in intransitive temporal linear logic of finite intervals”, J. Logic Comput., 15 (2005), 633–657 | DOI | MR

[20] Rybakov V. V., “Logical consecutions in discrete linear temporal logic”, J. Symbolic Logic, 70 (2005), 1137–1149 | DOI | MR | Zbl

[21] Rybakov V. V., “Branching time logics $\mathcal{BTL}^\mathrm{U,S}_\mathrm{N,N^{-1}}(\mathcal Z)_\alpha$ with operations Until and Since based on bundles of integer numbers, logical consecutions, deciding algorithms”, Theory Comput. Syst., 43 (2008), 254–271 | DOI | MR | Zbl

[22] Golovanov M. I., Kosheleva A. V., Rybakov V. V., “Logic of visibility, perception, and knowledge and admissible inference rules”, Logic J. IGPL, 13 (2005), 201–209 | DOI | MR | Zbl

[23] Calardo E., Rybakov V. V., “An axiomatisation for the multi-modal logic of knowledge and linear time LTK”, Logic J. IGPL, 15 (2007), 239–254 | DOI | MR | Zbl