An asymptotic upper bound for the chromatic index of random hypergraphs
Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 63-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an asymptotic upper bound for the chromatic index of a random hypergraph in the case where the edge length of the hypergraph is an increasing function of the number of vertices of the hypergraph.
@article{DM_2011_23_3_a4,
     author = {Yu. A. Budnikov},
     title = {An asymptotic upper bound for the chromatic index of random hypergraphs},
     journal = {Diskretnaya Matematika},
     pages = {63--81},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_3_a4/}
}
TY  - JOUR
AU  - Yu. A. Budnikov
TI  - An asymptotic upper bound for the chromatic index of random hypergraphs
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 63
EP  - 81
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_3_a4/
LA  - ru
ID  - DM_2011_23_3_a4
ER  - 
%0 Journal Article
%A Yu. A. Budnikov
%T An asymptotic upper bound for the chromatic index of random hypergraphs
%J Diskretnaya Matematika
%D 2011
%P 63-81
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_3_a4/
%G ru
%F DM_2011_23_3_a4
Yu. A. Budnikov. An asymptotic upper bound for the chromatic index of random hypergraphs. Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 63-81. http://geodesic.mathdoc.fr/item/DM_2011_23_3_a4/

[1] Pippenger N., Spencer J., “Asymptotic behavior of the chromatic index for hypergraphs”, J. Comb. Theory, 51 (1989), 24–42 | DOI | MR | Zbl

[2] Budnikov Yu. A., “Ob asimptoticheskom povedenii khromaticheskogo indeksa sluchainykh gipergrafov”, Intellektualnye sistemy, 11 (2007), 343–360 | MR

[3] Shiryaev A. N., Veroyatnost, MTsNMO, Moskva, 2004