On estimation of the number of graphs in some hereditary classes
Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 57-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the classes in the zero layer of the set of infinite hereditary classes of graphs defined by two forbidden subgraphs. One of these subgraphs is $K_{1,s}+O_p$ and the other is $K_q$. We give an upper bound for the number of graphs in these classes.
@article{DM_2011_23_3_a3,
     author = {V. A. Zamaraev},
     title = {On estimation of the number of graphs in some hereditary classes},
     journal = {Diskretnaya Matematika},
     pages = {57--62},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_3_a3/}
}
TY  - JOUR
AU  - V. A. Zamaraev
TI  - On estimation of the number of graphs in some hereditary classes
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 57
EP  - 62
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_3_a3/
LA  - ru
ID  - DM_2011_23_3_a3
ER  - 
%0 Journal Article
%A V. A. Zamaraev
%T On estimation of the number of graphs in some hereditary classes
%J Diskretnaya Matematika
%D 2011
%P 57-62
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_3_a3/
%G ru
%F DM_2011_23_3_a3
V. A. Zamaraev. On estimation of the number of graphs in some hereditary classes. Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 57-62. http://geodesic.mathdoc.fr/item/DM_2011_23_3_a3/

[1] Alekseev V. E., “Oblast znachenii entropii nasledstvennykh klassov grafov”, Diskretnaya matematika, 4:2 (1992), 148–157 | MR | Zbl

[2] Alekseev V. E., “Nasledstvennye klassy i kodirovanie grafov”, Problemy kibernetiki, 39 (1982), 151–164 | MR | Zbl

[3] Scheinerman E. R., Zito J., “On the size of hereditary classes of graphs”, J. Comb. Theory, 61 (1994), 16–39 | DOI | MR | Zbl

[4] Alekseev V. E., “O nizhnikh yarusakh reshetki nasledstvennykh klassov grafov”, Diskretnyi analiz i issledovanie operatsii, ser. 1, 4:1 (1997), 3–12 | MR | Zbl

[5] Balogh J., Bollobas B., Weinreich D., “The size of hereditary properties of graphs”, J. Comb. Theory, 79 (2000), 131–156 | DOI | MR | Zbl

[6] Corneil D. G., Lerchs H., Stewart-Burlingham L., “Complement reducible graphs”, Discrete Appl. Math., 3 (1981), 163–174 | DOI | MR | Zbl