On estimation of the number of graphs in some hereditary classes
Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 57-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the classes in the zero layer of the set of infinite hereditary classes of graphs defined by two forbidden subgraphs. One of these subgraphs is $K_{1,s}+O_p$ and the other is $K_q$. We give an upper bound for the number of graphs in these classes.
@article{DM_2011_23_3_a3,
     author = {V. A. Zamaraev},
     title = {On estimation of the number of graphs in some hereditary classes},
     journal = {Diskretnaya Matematika},
     pages = {57--62},
     year = {2011},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_3_a3/}
}
TY  - JOUR
AU  - V. A. Zamaraev
TI  - On estimation of the number of graphs in some hereditary classes
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 57
EP  - 62
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_3_a3/
LA  - ru
ID  - DM_2011_23_3_a3
ER  - 
%0 Journal Article
%A V. A. Zamaraev
%T On estimation of the number of graphs in some hereditary classes
%J Diskretnaya Matematika
%D 2011
%P 57-62
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/DM_2011_23_3_a3/
%G ru
%F DM_2011_23_3_a3
V. A. Zamaraev. On estimation of the number of graphs in some hereditary classes. Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 57-62. http://geodesic.mathdoc.fr/item/DM_2011_23_3_a3/

[1] Alekseev V. E., “Oblast znachenii entropii nasledstvennykh klassov grafov”, Diskretnaya matematika, 4:2 (1992), 148–157 | MR | Zbl

[2] Alekseev V. E., “Nasledstvennye klassy i kodirovanie grafov”, Problemy kibernetiki, 39 (1982), 151–164 | MR | Zbl

[3] Scheinerman E. R., Zito J., “On the size of hereditary classes of graphs”, J. Comb. Theory, 61 (1994), 16–39 | DOI | MR | Zbl

[4] Alekseev V. E., “O nizhnikh yarusakh reshetki nasledstvennykh klassov grafov”, Diskretnyi analiz i issledovanie operatsii, ser. 1, 4:1 (1997), 3–12 | MR | Zbl

[5] Balogh J., Bollobas B., Weinreich D., “The size of hereditary properties of graphs”, J. Comb. Theory, 79 (2000), 131–156 | DOI | MR | Zbl

[6] Corneil D. G., Lerchs H., Stewart-Burlingham L., “Complement reducible graphs”, Discrete Appl. Math., 3 (1981), 163–174 | DOI | MR | Zbl