Automaton representation of a~free group
Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 32-56

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new example of a free subgroup of a group of automaton substitutions. We present two automata with three states which generate this subgroup; the inner semigroups of these automata are not groups.
@article{DM_2011_23_3_a2,
     author = {S. V. Aleshin},
     title = {Automaton representation of a~free group},
     journal = {Diskretnaya Matematika},
     pages = {32--56},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_3_a2/}
}
TY  - JOUR
AU  - S. V. Aleshin
TI  - Automaton representation of a~free group
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 32
EP  - 56
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_3_a2/
LA  - ru
ID  - DM_2011_23_3_a2
ER  - 
%0 Journal Article
%A S. V. Aleshin
%T Automaton representation of a~free group
%J Diskretnaya Matematika
%D 2011
%P 32-56
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_3_a2/
%G ru
%F DM_2011_23_3_a2
S. V. Aleshin. Automaton representation of a~free group. Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 32-56. http://geodesic.mathdoc.fr/item/DM_2011_23_3_a2/