Some nonequiprobable models of random permutations
Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 23-31

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-parameter model of random $n$-permutations, which is a generalisation of the classical model of $A$-permutations, and investigate the joint distribution of the number of $A$-cycles and $\bar A$-cycles under various realisations of the subset $A\subset X_n=\{1,2,\dots,n\}$.
@article{DM_2011_23_3_a1,
     author = {G. I. Ivchenko and M. V. Soboleva},
     title = {Some nonequiprobable models of random permutations},
     journal = {Diskretnaya Matematika},
     pages = {23--31},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_3_a1/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - M. V. Soboleva
TI  - Some nonequiprobable models of random permutations
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 23
EP  - 31
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_3_a1/
LA  - ru
ID  - DM_2011_23_3_a1
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A M. V. Soboleva
%T Some nonequiprobable models of random permutations
%J Diskretnaya Matematika
%D 2011
%P 23-31
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_3_a1/
%G ru
%F DM_2011_23_3_a1
G. I. Ivchenko; M. V. Soboleva. Some nonequiprobable models of random permutations. Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 23-31. http://geodesic.mathdoc.fr/item/DM_2011_23_3_a1/