Some nonequiprobable models of random permutations
Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 23-31
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a two-parameter model of random $n$-permutations, which is a generalisation of the classical model of $A$-permutations, and investigate the joint distribution of the number of $A$-cycles and $\bar A$-cycles under various realisations of the subset $A\subset X_n=\{1,2,\dots,n\}$.
@article{DM_2011_23_3_a1,
author = {G. I. Ivchenko and M. V. Soboleva},
title = {Some nonequiprobable models of random permutations},
journal = {Diskretnaya Matematika},
pages = {23--31},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2011_23_3_a1/}
}
G. I. Ivchenko; M. V. Soboleva. Some nonequiprobable models of random permutations. Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 23-31. http://geodesic.mathdoc.fr/item/DM_2011_23_3_a1/