@article{DM_2011_23_3_a0,
author = {S. N. Selezneva},
title = {A fast algorithm for the construction of polynomials modulo~$k$ for $k$-valued functions for composite~$k$},
journal = {Diskretnaya Matematika},
pages = {3--22},
year = {2011},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2011_23_3_a0/}
}
S. N. Selezneva. A fast algorithm for the construction of polynomials modulo $k$ for $k$-valued functions for composite $k$. Diskretnaya Matematika, Tome 23 (2011) no. 3, pp. 3-22. http://geodesic.mathdoc.fr/item/DM_2011_23_3_a0/
[1] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1977 | MR
[2] Aizenberg N. N., Semion I. V., Tsitkin A. I., “Moschnost klassa funktsii $k$-znachnoi logiki ot $n$ peremennykh, predstavimykh polinomami po modulyu $k$”, Mnogoustoichivye elementy i ikh primenenie, Sovetskoe radio, Moskva, 1971, 79–83
[3] Carlitz L., “Functions and polynomials $(\operatorname{mod}p^n)$”, Acta Arith., 9 (1964), 67–78 | MR
[4] Aizenberg N. N., Semion I. V., “Nekotorye kriterii predstavimosti funktsii $k$-znachnoi logiki polinomami po modulyu $k$”, Mnogoustoichivye elementy i ikh primenenie, Sovetskoe radio, Moskva, 1971, 84–88 | MR
[5] Rozenberg I. G., “Polynomial functions over finite rings”, Glas. Mat., 10 (1975), 25–33 | MR
[6] Cherepov A. N., Nadstruktura klassa otnoshenii sravneniya v $k$-znachnoi logike po vsem modulyam-delitelyam $k$, Diss. kand. fiz.-mat. nauk, Moskva, 1986
[7] Remizov A. B., “O nadstrukture zamknutogo klassa polinomov po modulyu $k$”, Diskretnaya matematika, 1:1 (1989), 3–15 | MR | Zbl
[8] Meschaninov D. G., “Metod postroeniya polinomov dlya funktsii $k$-znachnoi logiki”, Diskretnaya matematika, 7:3 (1995), 48–60 | MR | Zbl